电催化剂
成核
催化作用
析氧
铱
材料科学
法拉第效率
化学工程
化学
阳极
纳米技术
电化学
电极
物理化学
有机化学
工程类
作者
Wenjuan Shi,Tonghao Shen,C. Xing,Kai Sun,Qisheng Yan,Wenzhe Niu,Xiao Yang,Jingjing Li,Chenyang Wei,Ruijie Wang,Shu‐Qing Fu,Yong Yang,Liangyao Xue,Junfeng Chen,Shiwen Cui,X Hu,Ke Xie,Xin Xu,Sai Duan,Yifei Xu
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2025-01-02
卷期号:387 (6735): 791-796
被引量:2
标识
DOI:10.1126/science.adr3149
摘要
The future deployment of terawatt-scale proton exchange membrane water electrolyzer (PEMWE) technology necessitates development of an efficient oxygen evolution catalyst with low cost and long lifetime. Currently, the stability of the most active iridium (Ir) catalysts is impaired by dissolution, redeposition, detachment, and agglomeration of Ir species. Here we present a ripening-induced embedding strategy that securely embeds the Ir catalyst in a cerium oxide support. Cryogenic electron tomography and all-atom kinetic Monte Carlo simulations reveal that synchronizing the growth rate of the support with the nucleation rate of Ir, regulated by sonication, is pivotal for successful synthesis. A PEMWE using this catalyst achieves a cell voltage of 1.72 volts at a current density of 3 amperes per square centimeter with an Ir loading of just 0.3 milligrams per square centimeter and a voltage degradation rate of 1.33 microvolts per hour, as demonstrated by a 6000-hour accelerated aging test.
科研通智能强力驱动
Strongly Powered by AbleSci AI