Trajectories and Influences of Depression in Adolescents: A Latent Profile Transition Analysis Study

沉思 萧条(经济学) 心理学 焦虑 临床心理学 心理干预 潜在类模型 心理健康 纵向研究 精神科 医学 认知 宏观经济学 病理 经济 统计 数学
作者
Yuelian Dai,Shen Lin,Shenghao Zhang,Zhenbiao Wu,Jiaqi Zhang,Qi Li,Jing Xiao
出处
期刊:Stress and Health [Wiley]
卷期号:41 (1)
标识
DOI:10.1002/smi.3528
摘要

Depression has become increasingly prevalent among adolescents, posing significant challenges for mental health professionals. While most studies on depression adopt a cross-sectional perspective or a variable-centred approach, these methods often fail to illuminate the developmental trajectories of depression in individuals. We employed Latent Profile Transition Analysis (LPTA), a person-centred approach, to analyse longitudinal data from a large adolescent sample (N = 978; Mage = 16.26, SD = 0.89; 52.2% females). This study aimed to identify distinct subgroups of depression and observe transitions between these groups over time, considering stress, anxiety, and rumination as covariates to predict these transitions and aid in the development of targeted interventions. We identified three distinct subgroups: 'low/no depression', 'moderate depression', and 'high depression'. Individuals in the low/no depression and moderate depression groups displayed a predominant tendency toward stability rather than change. Conversely, individuals in the high depression group showed a high probability of transitioning to the moderate depression group. Stress, rumination, and anxiety were significant predictors of transitions into more severe depressive groups. Notably, the predictive power of rumination diminished over time. This study relied solely on self-reported measures, which may introduce response bias. This study reveals dynamic trajectories of depression among adolescents using a person-centred approach, emphasising the importance of closely monitoring those in the moderate depression subgroup. Stress, anxiety, and rumination emerged as crucial predictors of transitions in depression severity, underscoring the need for targeted early interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助DE2022采纳,获得10
1秒前
yhz_zjut_suda发布了新的文献求助10
2秒前
3秒前
所所应助史莱莱莱姆采纳,获得10
4秒前
21完成签到,获得积分10
4秒前
4秒前
6秒前
多多完成签到,获得积分10
6秒前
DE2022发布了新的文献求助10
9秒前
科研通AI5应助鱼脑冻采纳,获得30
10秒前
小二郎应助YQT采纳,获得10
11秒前
隐形曼青应助大恶魔宝拉采纳,获得10
11秒前
许中原完成签到,获得积分10
11秒前
12秒前
12秒前
乐乐应助yhz_zjut_suda采纳,获得10
14秒前
受伤哈密瓜完成签到 ,获得积分10
14秒前
Maxine完成签到 ,获得积分10
15秒前
lbt1686666完成签到,获得积分10
15秒前
15秒前
FIN应助HJJHJH采纳,获得30
16秒前
zhzh0618发布了新的文献求助10
17秒前
科研通AI5应助DE2022采纳,获得10
17秒前
18秒前
赘婿应助陈梦鼠采纳,获得10
18秒前
Tatw完成签到 ,获得积分10
21秒前
syan完成签到,获得积分10
22秒前
23秒前
23秒前
科目三应助酷炫小笼包采纳,获得10
25秒前
华仔应助健忘煎蛋采纳,获得10
25秒前
科研通AI5应助8D采纳,获得30
25秒前
大树爱树懒完成签到,获得积分10
25秒前
25秒前
xxxlglm发布了新的文献求助10
27秒前
28秒前
29秒前
29秒前
卿筠完成签到,获得积分10
29秒前
深情安青应助美好斓采纳,获得10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491062
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150152
捐赠科研通 2770160
什么是DOI,文献DOI怎么找? 1520088
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196