Deep learning–based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data

医学 骨关节炎 聚类分析 关节置换术 人工智能 物理疗法 物理医学与康复 外科 病理 计算机科学 替代医学
作者
Jason S. Rockel,Divya Sharma,Osvaldo Espin‐Garcia,Katrina Hueniken,Amit Sandhu,Chiara Pastrello,Kala Sundararajan,Pratibha Potla,Noah Fine,Starlee S. Lively,K. Perry,Nizar N. Mahomed,Khalid Syed,Igor Jurišica,Anthony V. Perruccio,Y. Raja Rampersaud,Rajiv Gandhi,Mohit Kapoor
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
标识
DOI:10.1016/j.ard.2025.01.012
摘要

Primary knee osteoarthritis (KOA) is a heterogeneous disease with clinical and molecular contributors. Biofluids contain microRNAs and metabolites that can be measured by omic technologies. Multimodal deep learning is adept at uncovering complex relationships within multidomain data. We developed a novel multimodal deep learning framework for clustering of multiomic data from 3 subject-matched biofluids to identify distinct KOA endotypes and classify 1-year post-total knee arthroplasty (TKA) pain/function responses. In 414 patients with KOA, subject-matched plasma, synovial fluid, and urine were analysed using microRNA sequencing or metabolomics. Integrating 4 high-dimensional datasets comprising metabolites from plasma and microRNAs from plasma, synovial fluid, or urine, a multimodal deep learning variational autoencoder architecture with K-means clustering was employed. Features influencing cluster assignment were identified and pathway analyses conducted. An integrative machine learning framework combining 4 molecular domains and a clinical domain was then used to classify Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain/function responses after TKA within each cluster. Multimodal deep learning-based clustering of subjects across 4 domains yielded 3 distinct patient clusters. Feature signatures comprising microRNAs and metabolites across biofluids included 30, 16, and 24 features associated with clusters 1 to 3, respectively. Pathway analyses revealed distinct pathways associated with each cluster. Integration of 4 multiomic domains along with clinical data improved response classification performance, surpassing individual domain classifications alone. We developed a multimodal deep learning-based clustering model capable of integrating complex multifluid, multiomic data to assist in uncovering biologically distinct patient endotypes and enhance outcome classifications to TKA surgery, which may aid in future precision medicine approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小芳儿完成签到 ,获得积分10
1秒前
飘逸宛丝完成签到,获得积分10
2秒前
万能图书馆应助andyson666采纳,获得10
3秒前
ahan发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
SYLH应助糯米糍采纳,获得10
6秒前
Owen应助糯米糍采纳,获得10
6秒前
乐乐应助糯米糍采纳,获得10
6秒前
丘比特应助糯米糍采纳,获得10
6秒前
Jasper应助糯米糍采纳,获得10
6秒前
斯文败类应助糯米糍采纳,获得10
6秒前
情怀应助糯米糍采纳,获得10
6秒前
小二郎应助糯米糍采纳,获得10
6秒前
慕青应助糯米糍采纳,获得10
6秒前
赘婿应助糯米糍采纳,获得10
6秒前
Bosen完成签到,获得积分10
6秒前
nebula应助任大师兄采纳,获得10
6秒前
zzzwederfrft完成签到,获得积分10
6秒前
7秒前
999999完成签到,获得积分20
8秒前
xiaoyang完成签到,获得积分10
8秒前
grc完成签到,获得积分10
9秒前
大鹏发布了新的文献求助10
9秒前
9秒前
zzzwederfrft发布了新的文献求助10
10秒前
没有答案发布了新的文献求助10
10秒前
张叶卓发布了新的文献求助10
11秒前
12秒前
赘婿应助兴奋千兰采纳,获得10
12秒前
优雅的半梅完成签到 ,获得积分10
12秒前
15秒前
15秒前
16秒前
丰富的不惜完成签到,获得积分10
17秒前
香蕉觅云应助没有答案采纳,获得10
17秒前
17秒前
18秒前
Hello应助江亭送行客采纳,获得10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782