亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-Learning-Assisted Digital Fluorescence Immunoassay on Magnetic Beads for Ultrasensitive Determination of Protein Biomarkers

化学 免疫分析 色谱法 荧光 蛋白质检测 磁珠 纳米技术 抗体 物理 材料科学 量子力学 免疫学 生物
作者
Jian Zhang,Wenshuai Zhou,Honglan Qi,Xiaowei He
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05877
摘要

Digital fluorescence immunoassay (DFI) based on random dispersion magnetic beads (MBs) is one of the powerful methods for ultrasensitive determination of protein biomarkers. However, in the DFI, improving the limit of detection (LOD) is challenging since the ratio of signal-to-background and the speed of manual counting beads are low. Herein, we developed a deep-learning network (ATTBeadNet) by utilizing a new hybrid attention mechanism within a UNet3+ framework for accurately and fast counting the MBs and proposed a DFI using CdS quantum dots (QDs) with narrow peak and optical stability as reported at first time. The developed ATTBeadNet was applied to counting the MBs, resulting in the F1 score (95.91%) being higher than those of other methods (ImageJ, 68.33%; computer vision-based, 92.99%; fully convolutional network, 75.00%; mask region-based convolutional neural network, 70.34%). On principle-on-proof, a sandwich MB-based DFI was proposed, in which human interleukin-6 (IL-6) was taken as a model protein biomarker, while antibody-bound streptavidin-coated MBs were used as capture MBs and antibody-HRP-tyramide-functionalized CdS QDs were used as the binding reporter. When the developed ATTBeadNet was applied to the MB-based DFI of IL-6 (20 μL), the linear range from 5 to 100 fM and an LOD of 3.1 fM were achieved, which are better than those using the ImageJ method (linear range from 30 to 100 fM and LOD of 20 fM). This work demonstrates that the integration of the deep-learning network with DFI is a promising strategy for the highly sensitive and accurate determination of protein biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
想吃芝士焗饭完成签到 ,获得积分10
33秒前
小蘑菇应助SEM小菜鸡采纳,获得10
1分钟前
前寒武完成签到,获得积分10
1分钟前
2分钟前
3分钟前
3分钟前
SEM小菜鸡发布了新的文献求助10
3分钟前
4分钟前
田様应助Ainsely采纳,获得10
4分钟前
复杂的保温杯完成签到 ,获得积分10
4分钟前
枫威完成签到 ,获得积分10
5分钟前
HarryYang完成签到 ,获得积分10
5分钟前
SEM小菜鸡发布了新的文献求助10
6分钟前
6分钟前
从容芮完成签到,获得积分0
6分钟前
8分钟前
JamesPei应助yayee采纳,获得10
8分钟前
酷波er应助xx采纳,获得10
8分钟前
JaneChen完成签到 ,获得积分10
9分钟前
10分钟前
yayee完成签到,获得积分10
10分钟前
yayee发布了新的文献求助10
10分钟前
VDC应助科研通管家采纳,获得20
10分钟前
SciGPT应助mmyhn采纳,获得10
10分钟前
cuiclean123发布了新的文献求助10
10分钟前
大模型应助mmyhn采纳,获得10
10分钟前
健壮的花瓣完成签到 ,获得积分10
11分钟前
啥时候吃火锅完成签到 ,获得积分0
11分钟前
希望天下0贩的0应助mmyhn采纳,获得10
11分钟前
VDC应助Kapur采纳,获得30
11分钟前
研友_8Y26PL完成签到 ,获得积分10
12分钟前
激动的似狮完成签到,获得积分10
12分钟前
rebeycca完成签到,获得积分10
12分钟前
VDC应助科研通管家采纳,获得30
12分钟前
12分钟前
12分钟前
12分钟前
jyy应助yzf采纳,获得10
12分钟前
13分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371238
求助须知:如何正确求助?哪些是违规求助? 2989477
关于积分的说明 8735803
捐赠科研通 2672634
什么是DOI,文献DOI怎么找? 1464163
科研通“疑难数据库(出版商)”最低求助积分说明 677409
邀请新用户注册赠送积分活动 668693