材料科学
X射线光电子能谱
铟
光电子学
异质结
氧化铟锡
薄脆饼
太阳能电池
无定形固体
硅
电子迁移率
纳米技术
薄膜
化学工程
工程类
有机化学
化学
作者
Zhongyu Gao,Chengliang Han,Jiejun Pan,Jiajun Shen,Zhibin Liu,Kaixuan Chen,Zhikai Yi,Yong Zhang,Yu Zhong,Xianjie Zhou,Pingqi Gao
标识
DOI:10.1021/acsami.4c15684
摘要
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring In-free TCOs. However, no promising industrial solution has been obtained yet. In our work, we adopt the emerging reactive plasma deposition (RPD) approach and provide our In-reduced solution by directly reducing the In content from the source material. We designed the indium zinc oxide (IZO) target with a composition of Zn3In2O6 (i.e., (ZnO)3·In2O3). Density functional theory (DFT) calculation shows that the introduction of a large amount of ZnO significantly perturbs the conduction band of the In2O3 host, resulting in a limitation of exploring high-mobility IZO films. For TCOs used in solar cell application, low resistivity with high carrier mobility is required. Via RPD process optimization, we obtained the minimal resistivity value of 6.08 × 10–4 Ω·cm, which is comparable to our lab-standard tin-doped indium oxide (ITO) film. The corresponding electron mobility and carrier concentration are 31 cm2 V–1 s–1 and 3.37 × 1020 cm–3, respectively. Our IZO film is in an amorphous state. The optical band gap is ∼3.6 eV. X-ray photoelectron spectroscopy (XPS) data show that the film composition is In:Zn:O = 21.60:28.75:49.65 (at. %). Damp heat tests show strong stability of our IZO film, and no aging effects have been observed. Furthermore, we demonstrated wafer-scale silicon heterojunction (SHJ) solar cells with IZO films. As compared with our reference hydrogenated cerium-doped indium oxide (ICO)-based solar cells, the IZO-based devices show even higher fill factor parameters. Our amorphous state stable In-reduced IZO film could find versatile application in the sustainable development of temperature-sensitive devices such as SHJ and perovskite/silicon tandem solar cells, as well as flexible OLEDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI