Vibration prediction model and vibration characteristics of mining riser used in deep-sea gas hydrate extraction based on deep-learning

振动 正确性 人工神经网络 萃取(化学) 海洋工程 计算机科学 人工智能 工程类 算法 物理 声学 色谱法 化学
作者
Xiaoqiang Guo,Yingwei Li,Qi Li,Yuxuan Song,Jie Xu,Kelun Yang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0245296
摘要

During the deep-sea gas hydrate mining riser operation, the vibration prediction is obtained using a simplified theoretical model, and its accuracy cannot be effectively guaranteed. Deep learning methods can effectively solve this problem. Therefore, a three-dimensional vibration prediction model for the deep-sea gas hydrate mining riser is established using a long short-term memory network based on deep-learning, which can be trained with the help of the vibration data of the mining riser obtained in the field, and realize the advance prediction of the vibration response of the mining riser in the later period. In order to effectively verify the correctness of the model, a similar principle is used to develop an experimental rig for simulating the vibration of the mining riser under the excitation of internal and external flows. The experimental test results are compared with the model prediction results, and the decision coefficient (R2) reaches 99%, which verifies the correctness of the prediction model. Moreover, to further verify that the model can achieve vibration prediction of the deep-see mining riser, the energy method and Hamilton's principle are used to establish a theoretical model of gas–liquid–solid three-phase flow-induced vibration of the deep-sea hydrate mining riser. The results of the predictions in the later period are compared with the results of the theoretical model calculations. It is found that the coefficient of determination (R2) reaches 94.59%, which further verifies the effectiveness of the deep-learning prediction model. On this basis, the vibration responses of the mining riser are predicted under different shear flows, heave motion parameters of platform, lifting flow rate, hydrate abundance, and hydrate particle size. The influences of operational and structural parameters on the vibration response of the mining riser are investigated, and the vibration characteristics of the mining riser are revealed. The study results provide a theoretical foundation and a predictive modeling tool for the safety of hydrate mining risers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxx发布了新的文献求助10
刚刚
1秒前
Amie发布了新的文献求助10
1秒前
1秒前
1秒前
_Charmo完成签到,获得积分10
2秒前
2秒前
2秒前
任性的卿完成签到,获得积分10
3秒前
RZS完成签到,获得积分10
3秒前
4秒前
4秒前
11完成签到,获得积分10
5秒前
5秒前
远了个方发布了新的文献求助10
6秒前
6秒前
Orange应助曾建采纳,获得10
6秒前
6秒前
打打应助青云瑞晶采纳,获得10
7秒前
Severan发布了新的文献求助10
7秒前
LQ发布了新的文献求助10
8秒前
8秒前
luca完成签到,获得积分10
9秒前
pny发布了新的文献求助10
9秒前
依依发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
漂亮的人生完成签到,获得积分10
10秒前
a阿佳完成签到,获得积分20
11秒前
liboshi发布了新的文献求助10
11秒前
科研通AI5应助唾沫星子采纳,获得10
12秒前
鬼鬼完成签到,获得积分10
12秒前
12秒前
12秒前
luca发布了新的文献求助10
12秒前
sxx发布了新的文献求助10
13秒前
可爱的函函应助花追雨采纳,获得30
13秒前
踏实的求真完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552993
求助须知:如何正确求助?哪些是违规求助? 3129046
关于积分的说明 9380452
捐赠科研通 2828221
什么是DOI,文献DOI怎么找? 1554886
邀请新用户注册赠送积分活动 725656
科研通“疑难数据库(出版商)”最低求助积分说明 715112