LcProt: Proteomics‐based identification of plasma biomarkers for lung cancer multievent, a multicentre study

医学 生物标志物 肺癌 Lasso(编程语言) 肿瘤科 前瞻性队列研究 阶段(地层学) 内科学 队列 接收机工作特性 计算机科学 生物 生物化学 万维网 古生物学
作者
Hengrui Liang,Runchen Wang,Ran Cheng,Zhiming Ye,Na Zhao,Xiaohong Zhao,Ying Huang,Zhanpeng Jiang,Wang‐Zhong Li,Jianqi Zheng,Hongsheng Deng,Yu Jiang,Yuechun Lin,Yan Yun,Lei Song,Jie Li,Xin Xu,Wenhua Liang,Jun Liu,Jianxing He
出处
期刊:Clinical and translational medicine [Springer Science+Business Media]
卷期号:15 (1) 被引量:4
标识
DOI:10.1002/ctm2.70160
摘要

ABSTRACT Background Plasma protein has gained prominence in the non‐invasive predicting of lung cancer. We utilised Zeolite Zotero NaY‐based plasma proteomics to investigate its potential for multiple event predicting, including lung cancer diagnosis (task #1), lymph node metastasis detection (task #2) and tumour‒node‒metastasis (TNM) staging (task #3). Methods A total of 4703 plasma proteins were quantified from 241 participants based on a prospective cohort of 2757 participants. An additional 46 participants from external prospective cohort of 735 participants were used for validation. Feature selection was performed using differential expressed protein analysis, area under curve (AUC) evaluation and least absolute shrinkage and selection operator (LASSO) regression. Random forest was used for multitask model construction based on the key proteins. Feature importance was interpreted using Shapley additive explanations (SHAP) algorithm. Results For task #1, 10 proteins panel showed an AUC of .87 (.77‒.97) in the external validation. After integrating clinical factors, a significant increase diagnostic accuracy was observed with AUC of .91 (.85‒.98). For task #2, nine proteins panel achieved an AUC of .88 (.80‒.96), integration model showed an increase diagnostic accuracy with AUC of .90 (.85‒.97). For task #3, 10 proteins panel showed an AUC of .88 (.74‒.96) for stage I, .92 (.84‒.97) for stage II, .88 (.76‒.96) for stage III and .99 (.98‒.99) for stage IV in the integration model. Conclusions This study comprehensively profiled the NaY‐based plasma proteome biomarker, laying the foundation for a high‐performance blood test for predicting multiple events in lung cancer. Key points Our study developed an innovative nanomaterial, Zeolite NaY, which addressed the masking effect and improved the depth of the proteome. The performance of NaY‐based plasma proteomics as a preclinical diagnostic tool was validated through both internal and external cohort. Furthermore, we explored the different patterns of plasma protein changes during the progression of lung cancer and used the explanations method to elucidate the roles of proteins in the multitask predictive model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豪豪完成签到,获得积分10
刚刚
一一完成签到 ,获得积分10
刚刚
wyc完成签到,获得积分10
1秒前
不想干活应助yzbbb采纳,获得10
1秒前
bkagyin应助研友_89jWGL采纳,获得10
1秒前
吴圳完成签到,获得积分20
2秒前
4秒前
哲别发布了新的文献求助10
4秒前
科目三应助lili采纳,获得10
4秒前
赘婿应助蛋蛋采纳,获得10
4秒前
nightmoonsun完成签到,获得积分10
4秒前
科研通AI5应助李君然采纳,获得10
5秒前
大个应助SIDEsss采纳,获得10
5秒前
drjim发布了新的文献求助10
5秒前
5秒前
吴圳发布了新的文献求助10
5秒前
飞翔的霸天哥应助WLWLW采纳,获得30
6秒前
Maestro_S应助jyyg采纳,获得10
6秒前
不愿透露姓名科研人完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助joruruo采纳,获得10
6秒前
nancyshine完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
liuqizong123完成签到,获得积分10
8秒前
东晓完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
科研通AI5应助kk采纳,获得10
10秒前
叶子发布了新的文献求助10
10秒前
xubee发布了新的文献求助10
10秒前
随心发布了新的文献求助10
10秒前
xiaobai完成签到,获得积分10
10秒前
11秒前
深情安青应助友好的半仙采纳,获得10
11秒前
NexusExplorer应助lss采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426