Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllxxx发布了新的文献求助10
刚刚
俏皮的龙猫完成签到 ,获得积分10
1秒前
1秒前
木棉哆哆完成签到,获得积分10
1秒前
Lucas应助jack采纳,获得10
1秒前
1秒前
酷炫book发布了新的文献求助10
1秒前
寒江雪发布了新的文献求助10
1秒前
HCQ发布了新的文献求助10
2秒前
2秒前
2秒前
大胆班完成签到,获得积分10
2秒前
小刘同学完成签到,获得积分10
2秒前
2秒前
caocao完成签到,获得积分10
3秒前
3秒前
yin发布了新的文献求助10
3秒前
共享精神应助kyan采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
今后应助HRB采纳,获得10
4秒前
勤恳的猕猴桃完成签到,获得积分10
4秒前
4秒前
4秒前
稳重的千凝完成签到,获得积分10
4秒前
4秒前
123完成签到,获得积分10
4秒前
科研通AI6应助lz123采纳,获得30
4秒前
YU驳回了Ava应助
4秒前
陈锦辞完成签到,获得积分10
5秒前
LIU发布了新的文献求助10
5秒前
今后应助yi采纳,获得10
5秒前
5秒前
5秒前
坚强的钥匙完成签到,获得积分10
5秒前
小雨点完成签到 ,获得积分10
6秒前
6秒前
6秒前
张楚懿完成签到,获得积分10
6秒前
潇z发布了新的文献求助10
6秒前
落后蓝天发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433734
求助须知:如何正确求助?哪些是违规求助? 4546134
关于积分的说明 14201102
捐赠科研通 4466059
什么是DOI,文献DOI怎么找? 2447781
邀请新用户注册赠送积分活动 1438873
关于科研通互助平台的介绍 1415835