Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
popvich应助杨依楠采纳,获得20
1秒前
1秒前
传奇3应助永和采纳,获得10
1秒前
姜昕完成签到,获得积分10
2秒前
上官若男应助zzz采纳,获得10
2秒前
义气山水完成签到 ,获得积分10
2秒前
2秒前
2秒前
沐沐完成签到,获得积分10
2秒前
xwx完成签到,获得积分10
3秒前
打打应助星晴采纳,获得10
4秒前
阳光秋烟完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
热心的尔蓝完成签到,获得积分10
4秒前
称心的板栗完成签到,获得积分20
4秒前
windmelody完成签到,获得积分10
5秒前
wsq完成签到 ,获得积分10
5秒前
小佐佐完成签到 ,获得积分10
5秒前
在水一方应助Junsir采纳,获得10
6秒前
6秒前
月亮上的猫完成签到,获得积分10
6秒前
猛猛冲完成签到,获得积分10
7秒前
ll发布了新的文献求助10
7秒前
快乐姒完成签到 ,获得积分10
7秒前
8秒前
8秒前
樱桃小丸子完成签到,获得积分10
9秒前
善学以致用应助bob采纳,获得10
9秒前
9秒前
Tingting完成签到 ,获得积分10
10秒前
qyy完成签到,获得积分10
10秒前
牛奶牛奶完成签到,获得积分10
11秒前
Raewenning发布了新的文献求助10
11秒前
精明的盼雁完成签到,获得积分10
11秒前
soul完成签到,获得积分10
11秒前
12秒前
杂货铺老板娘完成签到,获得积分10
12秒前
May完成签到,获得积分10
12秒前
xxk完成签到,获得积分10
12秒前
砂砾发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413945
求助须知:如何正确求助?哪些是违规求助? 4530846
关于积分的说明 14125453
捐赠科研通 4446102
什么是DOI,文献DOI怎么找? 2439334
邀请新用户注册赠送积分活动 1431455
关于科研通互助平台的介绍 1409141