Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UHPC发布了新的文献求助10
4秒前
4秒前
4秒前
支雨泽发布了新的文献求助10
5秒前
Akim应助YIYI采纳,获得10
6秒前
修fei完成签到 ,获得积分10
8秒前
Liuruijia完成签到 ,获得积分10
10秒前
无奈的萍完成签到,获得积分10
10秒前
Rming发布了新的文献求助20
11秒前
lalala发布了新的文献求助10
11秒前
13秒前
完美世界应助a18336181581采纳,获得10
14秒前
布吉岛呀完成签到 ,获得积分10
17秒前
细心的安双完成签到 ,获得积分10
17秒前
17秒前
shineshine完成签到 ,获得积分10
18秒前
yy完成签到 ,获得积分10
18秒前
遗忘发布了新的文献求助10
19秒前
二橙完成签到 ,获得积分10
21秒前
22秒前
小g完成签到,获得积分10
22秒前
penny0000完成签到,获得积分10
25秒前
芽衣完成签到 ,获得积分10
25秒前
聂青枫完成签到,获得积分10
26秒前
无辜丹翠完成签到 ,获得积分10
26秒前
大个应助高xl采纳,获得10
27秒前
Stella应助科研通管家采纳,获得30
28秒前
Suyx应助科研通管家采纳,获得10
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
佰斯特威应助科研通管家采纳,获得10
28秒前
28秒前
桐桐应助科研通管家采纳,获得10
28秒前
28秒前
29秒前
jueding应助科研通管家采纳,获得10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
29秒前
Xu_W卜完成签到,获得积分10
30秒前
善学以致用应助dvjkj采纳,获得20
32秒前
34秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378541
求助须知:如何正确求助?哪些是违规求助? 4502955
关于积分的说明 14014761
捐赠科研通 4411567
什么是DOI,文献DOI怎么找? 2423362
邀请新用户注册赠送积分活动 1416284
关于科研通互助平台的介绍 1393703