已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
good发布了新的文献求助10
1秒前
天凉王破完成签到 ,获得积分10
3秒前
小债完成签到 ,获得积分10
4秒前
池haojie发布了新的文献求助10
7秒前
DrCuiTianjin完成签到 ,获得积分0
7秒前
云汐完成签到,获得积分10
9秒前
10秒前
zzzy完成签到 ,获得积分10
10秒前
pK完成签到 ,获得积分10
10秒前
鱼羊明完成签到 ,获得积分10
11秒前
sopha发布了新的文献求助10
14秒前
19秒前
yiyao完成签到 ,获得积分10
20秒前
无花果应助bobo1129采纳,获得10
20秒前
顾矜应助拼搏的白玉采纳,获得10
23秒前
王艳完成签到 ,获得积分10
24秒前
ding应助chen采纳,获得20
24秒前
28秒前
李付清完成签到 ,获得积分10
31秒前
32秒前
背后的若之完成签到 ,获得积分10
34秒前
34秒前
Orange应助闪闪的熠彤采纳,获得10
34秒前
yb716发布了新的文献求助10
34秒前
35秒前
LY0430完成签到 ,获得积分10
39秒前
震千筹完成签到,获得积分10
40秒前
41秒前
疯院士完成签到,获得积分10
41秒前
无辜的惜寒完成签到 ,获得积分10
43秒前
谭文完成签到 ,获得积分10
44秒前
45秒前
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
仓鼠球完成签到,获得积分10
47秒前
47秒前
49秒前
50秒前
长安完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432027
求助须知:如何正确求助?哪些是违规求助? 4544781
关于积分的说明 14194087
捐赠科研通 4464004
什么是DOI,文献DOI怎么找? 2446934
邀请新用户注册赠送积分活动 1438258
关于科研通互助平台的介绍 1415046