Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助活泼灵枫采纳,获得10
刚刚
刚刚
小新同学发布了新的文献求助10
刚刚
1秒前
smy完成签到,获得积分10
2秒前
wanci应助玄音采纳,获得10
2秒前
汉堡包应助科研喵采纳,获得10
3秒前
3秒前
3秒前
风趣的鸡翅完成签到,获得积分10
3秒前
4秒前
严珍珍完成签到 ,获得积分10
4秒前
怡然铃铛发布了新的文献求助10
4秒前
田様应助堀江真夏采纳,获得10
4秒前
冷酷的听兰完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
三里墩头发布了新的文献求助20
6秒前
顺利的机器猫完成签到 ,获得积分10
7秒前
123123发布了新的文献求助10
7秒前
7秒前
eachon发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
于鑫完成签到,获得积分10
7秒前
神奇小鹿完成签到,获得积分10
8秒前
8秒前
8秒前
Doo_lu发布了新的文献求助10
8秒前
脑洞疼应助星星boy采纳,获得10
9秒前
LOWRY发布了新的文献求助10
9秒前
9秒前
于鑫发布了新的文献求助10
10秒前
10秒前
孙素智发布了新的文献求助10
11秒前
11秒前
12秒前
Imogen发布了新的文献求助10
12秒前
meethaha发布了新的文献求助10
12秒前
天天快乐应助fanny采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978478
求助须知:如何正确求助?哪些是违规求助? 3522465
关于积分的说明 11213660
捐赠科研通 3259954
什么是DOI,文献DOI怎么找? 1799695
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 806987