Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1816013153完成签到,获得积分10
1秒前
33完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
5秒前
木南发布了新的文献求助10
5秒前
5秒前
Bi发布了新的文献求助10
5秒前
02发布了新的文献求助10
5秒前
水母绷带完成签到,获得积分10
5秒前
LabRat完成签到 ,获得积分10
5秒前
lsm发布了新的文献求助10
6秒前
lili完成签到,获得积分10
6秒前
6秒前
光亮的立果完成签到 ,获得积分10
7秒前
Hello应助kkyy采纳,获得100
7秒前
热心海云发布了新的文献求助10
8秒前
情怀应助维尼采纳,获得10
8秒前
陶醉山灵发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助20
10秒前
想学习发布了新的文献求助10
10秒前
彭于晏应助典雅的无颜采纳,获得10
10秒前
科研通AI6应助mmccc1采纳,获得10
10秒前
稳重迎荷完成签到 ,获得积分10
11秒前
冷傲的誉完成签到,获得积分20
12秒前
乐观大叔完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
Bi完成签到,获得积分20
15秒前
15秒前
若晨发布了新的文献求助10
16秒前
CYH发布了新的文献求助20
16秒前
宿亮东发布了新的文献求助10
16秒前
梅天豪应助动听牛排采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531486
求助须知:如何正确求助?哪些是违规求助? 4620295
关于积分的说明 14572638
捐赠科研通 4559928
什么是DOI,文献DOI怎么找? 2498650
邀请新用户注册赠送积分活动 1478588
关于科研通互助平台的介绍 1449980