已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助star采纳,获得10
2秒前
2秒前
蒙豆儿完成签到,获得积分10
2秒前
5秒前
蒙豆儿发布了新的文献求助10
6秒前
Bi8Bo完成签到,获得积分20
7秒前
fusheng完成签到 ,获得积分0
10秒前
luxiaoyu发布了新的文献求助10
11秒前
科研通AI5应助蒙豆儿采纳,获得10
13秒前
浮生完成签到 ,获得积分10
14秒前
榨菜完成签到,获得积分10
16秒前
17秒前
whr完成签到,获得积分10
19秒前
19秒前
star发布了新的文献求助10
21秒前
newplayer完成签到,获得积分10
24秒前
星辰大海应助luxiaoyu采纳,获得10
24秒前
31秒前
奇异果完成签到 ,获得积分10
32秒前
33秒前
chem-w发布了新的文献求助10
34秒前
36秒前
37秒前
39秒前
Benjamin完成签到 ,获得积分10
40秒前
健壮惋清完成签到 ,获得积分10
40秒前
40秒前
CC关注了科研通微信公众号
41秒前
42秒前
G1997完成签到 ,获得积分10
42秒前
UUU完成签到 ,获得积分10
44秒前
wbs13521完成签到,获得积分0
44秒前
非蛋白呼吸商完成签到,获得积分10
45秒前
chem-w完成签到,获得积分10
46秒前
zzz发布了新的文献求助10
47秒前
Wang_JN完成签到 ,获得积分10
49秒前
51秒前
53秒前
zzz完成签到,获得积分20
54秒前
lhtyzcg完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581296
求助须知:如何正确求助?哪些是违规求助? 3999257
关于积分的说明 12380990
捐赠科研通 3673853
什么是DOI,文献DOI怎么找? 2024781
邀请新用户注册赠送积分活动 1058580
科研通“疑难数据库(出版商)”最低求助积分说明 945299