Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
fan发布了新的文献求助10
1秒前
star发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
彭于晏应助化学喵采纳,获得10
2秒前
2秒前
白白完成签到,获得积分20
2秒前
科研通AI6应助gaga采纳,获得10
2秒前
猫拖发布了新的文献求助10
2秒前
2秒前
整齐的巧荷完成签到,获得积分10
3秒前
我是老大应助zc采纳,获得10
3秒前
3秒前
panghu完成签到 ,获得积分10
3秒前
4秒前
大模型应助wq采纳,获得10
4秒前
4秒前
苏洋发布了新的文献求助10
4秒前
会咩的嘉人璐完成签到,获得积分10
4秒前
5秒前
健哥完成签到,获得积分10
5秒前
5秒前
codwest完成签到,获得积分10
5秒前
5秒前
Accept完成签到,获得积分10
5秒前
漂泊者发布了新的文献求助10
6秒前
熊猫完成签到 ,获得积分10
6秒前
英吉利25发布了新的文献求助10
6秒前
不圆完成签到,获得积分10
6秒前
橙以澄发布了新的文献求助10
7秒前
7秒前
科研混子发布了新的文献求助10
7秒前
合适的发卡完成签到,获得积分10
7秒前
张小哥12发布了新的文献求助10
7秒前
科研通AI6应助wch666采纳,获得10
8秒前
8秒前
18166992885发布了新的文献求助10
9秒前
9秒前
9秒前
xu发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873