Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有谁共鸣发布了新的文献求助10
刚刚
cg666完成签到 ,获得积分10
1秒前
桐桐应助做好胶水采纳,获得10
1秒前
2秒前
Sun1c7发布了新的文献求助20
3秒前
默默荔枝发布了新的文献求助30
3秒前
ywt发布了新的文献求助10
4秒前
浮游应助Lin采纳,获得10
4秒前
4秒前
5秒前
我是老大应助vvvvvv采纳,获得10
5秒前
5秒前
changl2023完成签到,获得积分10
5秒前
7秒前
7秒前
Ferry发布了新的文献求助10
7秒前
8秒前
8秒前
Ran完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
lico发布了新的文献求助10
9秒前
9秒前
SK完成签到,获得积分20
10秒前
10秒前
诸笑珊完成签到,获得积分10
10秒前
圆圆方方发布了新的文献求助10
10秒前
yongjiezhang发布了新的文献求助10
11秒前
11秒前
玩命做科研完成签到,获得积分10
12秒前
库克发布了新的文献求助10
12秒前
陈小包发布了新的文献求助10
13秒前
13秒前
13秒前
阿歪歪发布了新的文献求助10
14秒前
14秒前
何aa发布了新的文献求助20
14秒前
无名完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950877
求助须知:如何正确求助?哪些是违规求助? 4213567
关于积分的说明 13105023
捐赠科研通 3995465
什么是DOI,文献DOI怎么找? 2186928
邀请新用户注册赠送积分活动 1202156
关于科研通互助平台的介绍 1115421