Physical-aware model accuracy estimation for protein complex using deep learning method

计算机科学 人工智能 深度学习 估计 机器学习 工程类 系统工程
作者
Haodong Wang,Meng Sun,Lei Xie,Dong Liu,Guijun Zhang
标识
DOI:10.1101/2024.10.31.621211
摘要

Abstract With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to protein complexes, driving the continued development of new methods for multimer structure prediction. Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to evaluate the residue-wise quality of protein complex models. For the input complex model, the residue-based contact area and orientation features were first constructed using Voronoi tessellation, representing the potential physical interactions and hydrophobic properties. Then, the relationship between local residues and the overall complex topology as well as the inter-residue evolutionary information are characterized by geometry-based features, protein language model embedding representation, and knowledge-based statistical potential features. Finally, these features are fed into a fused network architecture employing equivalent graph neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69% and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5% improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition, DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods on 43% and 50% of the targets, respectively. All these results suggest that physical-aware information based on the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely available at http://zhanglab-bioinf.com/DeepUMQA-PA/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Ziyi_Xu采纳,获得10
1秒前
1秒前
852应助火星上的迎天采纳,获得10
2秒前
小余完成签到,获得积分10
2秒前
wangyc发布了新的文献求助10
2秒前
Jasper应助热情香氛采纳,获得10
3秒前
鸭先知发布了新的文献求助10
3秒前
金元宝完成签到 ,获得积分10
3秒前
博修发布了新的文献求助10
3秒前
Akim应助zhou123432采纳,获得10
3秒前
4秒前
乐乐应助尹大大采纳,获得10
4秒前
小林完成签到 ,获得积分10
5秒前
5秒前
Lyuoah完成签到 ,获得积分10
6秒前
6秒前
peaceone完成签到,获得积分10
6秒前
7秒前
求知若渴完成签到,获得积分0
7秒前
TAC发布了新的文献求助10
7秒前
bb发布了新的文献求助20
8秒前
浅笑发布了新的文献求助10
8秒前
8秒前
8秒前
正直半雪完成签到,获得积分20
9秒前
lab发布了新的文献求助10
9秒前
9秒前
Spinnin完成签到,获得积分10
9秒前
yiwangpeiqi发布了新的文献求助10
10秒前
科研通AI2S应助物理陈老师采纳,获得10
10秒前
JamesPei应助稳一稳采纳,获得10
11秒前
ymX发布了新的文献求助10
11秒前
木又权发布了新的文献求助10
11秒前
热情香氛发布了新的文献求助10
11秒前
Moonboss发布了新的文献求助10
12秒前
小蘑菇应助charint采纳,获得10
12秒前
qhy完成签到,获得积分10
12秒前
14秒前
lllly发布了新的文献求助10
15秒前
小张z完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419054
求助须知:如何正确求助?哪些是违规求助? 4534549
关于积分的说明 14145079
捐赠科研通 4450939
什么是DOI,文献DOI怎么找? 2441488
邀请新用户注册赠送积分活动 1433134
关于科研通互助平台的介绍 1410503