Boosted Charge Transport Efficiency for Bismuth and Oxygen Dual Vacancy-Engineered BiVO4 Photoanodes

对偶(语法数字) 材料科学 空位缺陷 电荷(物理) 双重角色 氧气 光电子学 纳米技术 凝聚态物理 化学 物理 冶金 组合化学 艺术 文学类 有机化学 量子力学
作者
Jiangtao Huang,Tao Lin,Liyu Lin,Guanjie Ma,Zongyan Zhang,Stephan Handschuh‐Wang,Aiyun Meng,Peigang Han,Bin He
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:7 (22): 10710-10720
标识
DOI:10.1021/acsaem.4c02394
摘要

Bismuth vanadate (BiVO4) is a promising photoanode material that has been widely employed to address environmental pollution and the energy crisis. However, defect states substantially affect the efficiency of BiVO4 photoanodes, and practical applications are severely limited because the fabrication of large-area photoanodes possessing excellent and uniform photoelectrochemical (PEC) activities remains challenging. Herein, bismuth and oxygen dual vacancy-engineered BiVO4 photoanodes were fabricated by cosputtering BiVO4 and V targets. The Bi/V atomic ratio of the BiVO4 photoanode was tailored by tuning the sputtering power of the V target (PV), thereby regulating both vacancy types in the BiVO4 photoanode. The optimized BiVO4 photoanode was fabricated at a PV of 300 W and featured the highest bismuth vacancy (Bivac) concentration (12%) and oxygen vacancy (Ovac) concentration. Under solar spectrum air mass 1.5 irradiation, the current density of the optimized BiVO4 photoanode was 1.9 mA/cm2 (at 1.6 VRHE (versus a reversible hydrogen electrode)), which was 11.9 times higher than that of the vacancy-free BiVO4 photoanode (0.16 mA/cm2). Meanwhile, the optimized dual vacancy-engineered BiVO4 photoanode exhibited the highest tetracycline hydrochloride degradation efficiency (79%) within 12 min, which was 2.9 times higher than that of the vacancy-free BiVO4 photoanode (27%). The promoted PEC activity is ascribed to the high carrier concentration and efficient Bivac- and Ovac-derived charge transport. This work offers a strategy for fabricating highly efficient, large-area BiVO4 photoanodes containing adjustable Bivac and Ovac concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助谢诚杰采纳,获得10
1秒前
年三月完成签到 ,获得积分10
3秒前
jiayile发布了新的文献求助10
4秒前
5秒前
7秒前
康大帅完成签到,获得积分10
7秒前
7秒前
ahead应助Hangyu采纳,获得10
8秒前
9秒前
9秒前
玖玖完成签到,获得积分10
10秒前
koko发布了新的文献求助10
11秒前
康大帅发布了新的文献求助10
11秒前
醒醒发布了新的文献求助10
12秒前
12秒前
13秒前
kk发布了新的文献求助10
13秒前
优秀小笼包完成签到,获得积分10
14秒前
Aurora完成签到,获得积分10
14秒前
Kelly1426完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
谢诚杰发布了新的文献求助10
16秒前
16秒前
17秒前
NexusExplorer应助锌锌点灯采纳,获得10
17秒前
CodeCraft应助科研快乐小狗采纳,获得10
18秒前
18秒前
18秒前
吱布吱布发布了新的文献求助10
19秒前
科研通AI5应助小哲采纳,获得10
20秒前
wangjq完成签到,获得积分10
21秒前
CGBY完成签到 ,获得积分10
21秒前
ml发布了新的文献求助10
21秒前
活力的幻枫完成签到,获得积分10
21秒前
欣喜亚男发布了新的文献求助10
21秒前
21秒前
小王完成签到,获得积分10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769687
求助须知:如何正确求助?哪些是违规求助? 3314764
关于积分的说明 10173625
捐赠科研通 3030095
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519