Application of artificial intelligence in the detection of Borrmann type 4 advanced gastric cancer in upper endoscopy (with video)

医学 内窥镜检查 癌症 癌症检测 人工智能 内科学 胃肠病学 计算机科学
作者
Mi Jin Oh,Jinbae Park,Jiwoon Jeon,Mina Park,Seungkyung Kang,Su Hyun Kim,Su Hee Park,Young Hoon Chang,Cheol Min Shin,Seung Joo Kang,Seung‐Han Lee,Sang Gyun Kim,Soo‐Jeong Cho
出处
期刊:Cancer [Wiley]
卷期号:131 (4)
标识
DOI:10.1002/cncr.35768
摘要

Borrmann type-4 (B-4) advanced gastric cancer is challenging to diagnose through routine endoscopy, leading to a poor prognosis. The objective of this study was to develop an artificial intelligence (AI)-based system capable of detecting B-4 gastric cancers using upper endoscopy. Endoscopic images from 259 patients who were diagnosed with B-4 gastric cancer and 595 controls who had benign conditions were retrospectively collected from Seoul National University Hospital for training and testing. Internal validation involved prospectively collected endoscopic videos from eight patients with B-4 gastric cancer and 148 controls. For external validation, endoscopic images and videos from patients with B-4 gastric cancer and controls at the Seoul National University Bundang Hospital were used. To calculate patient-based accuracy, sensitivity, and specificity, a diagnosis of B-4 was made for patients in whom greater than 50% of the images were identified as B-4 gastric cancer. The accuracy of the patient-based diagnosis was highest in the internal image test set, with accuracy, sensitivity, and specificity of 93.22%, 92.86%, and 93.39%, respectively. The accuracy of the model in the internal validation videos, the external validation images, and the external validation videos was 91.03%, 91.86%, and 86.71%, respectively. Notably, in both the internal and external video sets, the AI model demonstrated 100% sensitivity for diagnosing patients who had B-4 gastric cancer. An innovative AI-based model was developed to identify B-4 gastric cancer using endoscopic images. This AI model is specialized for the highly sensitive detection of rare B-4 gastric cancer and is expected to assist clinicians in real-time endoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤圆完成签到,获得积分10
刚刚
1秒前
Vizz发布了新的文献求助10
2秒前
可爱的函函应助akiyy采纳,获得10
2秒前
3秒前
李爱国应助yoogae采纳,获得10
4秒前
耍酷雁桃发布了新的文献求助10
5秒前
5秒前
西贝发布了新的文献求助10
6秒前
阳光的班发布了新的文献求助10
8秒前
猫蒲发布了新的文献求助10
8秒前
9秒前
小六发布了新的文献求助10
10秒前
ky完成签到 ,获得积分10
10秒前
领导范儿应助博ge采纳,获得30
12秒前
上官若男应助饱满的琦采纳,获得10
13秒前
14秒前
16秒前
16秒前
丁鹏笑完成签到 ,获得积分0
18秒前
mmmm发布了新的文献求助10
18秒前
Lucas应助冷静的雅山采纳,获得10
18秒前
19秒前
yanna发布了新的文献求助10
19秒前
耍酷雁桃完成签到,获得积分20
19秒前
思源应助乐观的雅彤采纳,获得10
20秒前
20秒前
SYLH应助椰青冰萃采纳,获得30
21秒前
koko完成签到,获得积分10
21秒前
23秒前
独特的秋发布了新的文献求助10
24秒前
英俊的铭应助北城采纳,获得10
24秒前
哭泣半双发布了新的文献求助10
25秒前
酷炫笑翠发布了新的文献求助10
26秒前
orixero应助mmmm采纳,获得10
26秒前
27秒前
27秒前
zhang发布了新的文献求助10
30秒前
31秒前
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232