清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of artificial intelligence in the detection of Borrmann type 4 advanced gastric cancer in upper endoscopy (with video)

医学 内窥镜检查 癌症 癌症检测 人工智能 内科学 胃肠病学 计算机科学
作者
Mi Jin Oh,Jinbae Park,Jiwoon Jeon,Mina Park,Seungkyung Kang,Su Hyun Kim,Su Hee Park,Young Hoon Chang,Cheol Min Shin,Seung Joo Kang,Seung‐Han Lee,Sang Gyun Kim,Soo‐Jeong Cho
出处
期刊:Cancer [Wiley]
卷期号:131 (4)
标识
DOI:10.1002/cncr.35768
摘要

Borrmann type-4 (B-4) advanced gastric cancer is challenging to diagnose through routine endoscopy, leading to a poor prognosis. The objective of this study was to develop an artificial intelligence (AI)-based system capable of detecting B-4 gastric cancers using upper endoscopy. Endoscopic images from 259 patients who were diagnosed with B-4 gastric cancer and 595 controls who had benign conditions were retrospectively collected from Seoul National University Hospital for training and testing. Internal validation involved prospectively collected endoscopic videos from eight patients with B-4 gastric cancer and 148 controls. For external validation, endoscopic images and videos from patients with B-4 gastric cancer and controls at the Seoul National University Bundang Hospital were used. To calculate patient-based accuracy, sensitivity, and specificity, a diagnosis of B-4 was made for patients in whom greater than 50% of the images were identified as B-4 gastric cancer. The accuracy of the patient-based diagnosis was highest in the internal image test set, with accuracy, sensitivity, and specificity of 93.22%, 92.86%, and 93.39%, respectively. The accuracy of the model in the internal validation videos, the external validation images, and the external validation videos was 91.03%, 91.86%, and 86.71%, respectively. Notably, in both the internal and external video sets, the AI model demonstrated 100% sensitivity for diagnosing patients who had B-4 gastric cancer. An innovative AI-based model was developed to identify B-4 gastric cancer using endoscopic images. This AI model is specialized for the highly sensitive detection of rare B-4 gastric cancer and is expected to assist clinicians in real-time endoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾君如完成签到,获得积分10
22秒前
38秒前
暴走小虎发布了新的文献求助10
43秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
研友_8y2G0L完成签到,获得积分10
1分钟前
1分钟前
sci_zt完成签到 ,获得积分10
1分钟前
蜂蜜不是糖完成签到 ,获得积分10
1分钟前
kjwu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
founder发布了新的文献求助10
1分钟前
kekeyo发布了新的文献求助10
1分钟前
李爱国应助founder采纳,获得10
1分钟前
1分钟前
一张不够花完成签到 ,获得积分10
1分钟前
1分钟前
和谐的夏岚完成签到 ,获得积分10
2分钟前
852应助kjwu采纳,获得10
2分钟前
倦鸟余花发布了新的文献求助10
2分钟前
mzhang2完成签到 ,获得积分10
2分钟前
3分钟前
英喆完成签到 ,获得积分10
3分钟前
3分钟前
kjwu发布了新的文献求助10
3分钟前
可夫司机完成签到 ,获得积分10
3分钟前
王磊完成签到 ,获得积分10
4分钟前
ww完成签到,获得积分10
4分钟前
小西米完成签到 ,获得积分10
4分钟前
藤椒辣鱼应助科研通管家采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得20
5分钟前
决明子完成签到 ,获得积分10
5分钟前
kjwu发布了新的文献求助10
5分钟前
赛韓吧完成签到 ,获得积分10
5分钟前
6分钟前
物语发布了新的文献求助10
6分钟前
ding应助物语采纳,获得10
6分钟前
7分钟前
路路完成签到 ,获得积分10
7分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463646
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055245
捐赠科研通 2746966
什么是DOI,文献DOI怎么找? 1507180
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695956