已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of artificial intelligence in the detection of Borrmann type 4 advanced gastric cancer in upper endoscopy (with video)

医学 内窥镜检查 癌症 癌症检测 人工智能 内科学 胃肠病学 计算机科学
作者
Mi Jin Oh,Jinbae Park,Jiwoon Jeon,Mina Park,Seungkyung Kang,Su Hyun Kim,Su Hee Park,Young Hoon Chang,Cheol Min Shin,Seung Joo Kang,Seung‐Han Lee,Sang Gyun Kim,Soo‐Jeong Cho
出处
期刊:Cancer [Wiley]
卷期号:131 (4): e35768-e35768
标识
DOI:10.1002/cncr.35768
摘要

Abstract Background Borrmann type‐4 (B‐4) advanced gastric cancer is challenging to diagnose through routine endoscopy, leading to a poor prognosis. The objective of this study was to develop an artificial intelligence (AI)‐based system capable of detecting B‐4 gastric cancers using upper endoscopy. Methods Endoscopic images from 259 patients who were diagnosed with B‐4 gastric cancer and 595 controls who had benign conditions were retrospectively collected from Seoul National University Hospital for training and testing. Internal validation involved prospectively collected endoscopic videos from eight patients with B‐4 gastric cancer and 148 controls. For external validation, endoscopic images and videos from patients with B‐4 gastric cancer and controls at the Seoul National University Bundang Hospital were used. To calculate patient‐based accuracy, sensitivity, and specificity, a diagnosis of B‐4 was made for patients in whom greater than 50% of the images were identified as B‐4 gastric cancer. Results The accuracy of the patient‐based diagnosis was highest in the internal image test set, with accuracy, sensitivity, and specificity of 93.22%, 92.86%, and 93.39%, respectively. The accuracy of the model in the internal validation videos, the external validation images, and the external validation videos was 91.03%, 91.86%, and 86.71%, respectively. Notably, in both the internal and external video sets, the AI model demonstrated 100% sensitivity for diagnosing patients who had B‐4 gastric cancer. Conclusions An innovative AI‐based model was developed to identify B‐4 gastric cancer using endoscopic images. This AI model is specialized for the highly sensitive detection of rare B‐4 gastric cancer and is expected to assist clinicians in real‐time endoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋堡完成签到 ,获得积分10
刚刚
青衫完成签到 ,获得积分10
1秒前
2秒前
舒适梦菡完成签到,获得积分20
2秒前
2秒前
炙热的雪糕完成签到,获得积分10
4秒前
NEKO发布了新的文献求助30
4秒前
sun完成签到,获得积分10
6秒前
科研通AI2S应助华桦子采纳,获得10
6秒前
清脆的沛容完成签到,获得积分10
6秒前
hill完成签到,获得积分10
6秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
gexzygg发布了新的文献求助10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
CodeCraft应助淮上有秋山采纳,获得10
8秒前
真的不会完成签到,获得积分10
9秒前
傻芙芙的完成签到,获得积分10
11秒前
13秒前
14秒前
偷看星星完成签到 ,获得积分10
16秒前
16秒前
岑晓冰完成签到 ,获得积分10
17秒前
17秒前
共享精神应助汉皇高祖采纳,获得10
18秒前
19秒前
wtl发布了新的文献求助10
20秒前
ppppp完成签到 ,获得积分10
20秒前
我是老大应助123456采纳,获得10
21秒前
归尘应助吃个馍馍采纳,获得10
22秒前
李爱国应助wzd采纳,获得10
22秒前
冬日暖阳发布了新的文献求助10
23秒前
Bobo发布了新的文献求助10
23秒前
gexzygg完成签到,获得积分0
24秒前
bkagyin应助wtl采纳,获得10
25秒前
Ava应助NEKO采纳,获得10
25秒前
BA1完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603132
求助须知:如何正确求助?哪些是违规求助? 4688223
关于积分的说明 14852963
捐赠科研通 4687148
什么是DOI,文献DOI怎么找? 2540391
邀请新用户注册赠送积分活动 1506951
关于科研通互助平台的介绍 1471507