Application of artificial intelligence in the detection of Borrmann type 4 advanced gastric cancer in upper endoscopy (with video)

医学 内窥镜检查 癌症 癌症检测 人工智能 内科学 胃肠病学 计算机科学
作者
Mi Jin Oh,Jinbae Park,Jiwoon Jeon,Mina Park,Seungkyung Kang,Su Hyun Kim,Su Hee Park,Young Hoon Chang,Cheol Min Shin,Seung Joo Kang,Seung‐Han Lee,Sang Gyun Kim,Soo‐Jeong Cho
出处
期刊:Cancer [Wiley]
卷期号:131 (4): e35768-e35768
标识
DOI:10.1002/cncr.35768
摘要

Abstract Background Borrmann type‐4 (B‐4) advanced gastric cancer is challenging to diagnose through routine endoscopy, leading to a poor prognosis. The objective of this study was to develop an artificial intelligence (AI)‐based system capable of detecting B‐4 gastric cancers using upper endoscopy. Methods Endoscopic images from 259 patients who were diagnosed with B‐4 gastric cancer and 595 controls who had benign conditions were retrospectively collected from Seoul National University Hospital for training and testing. Internal validation involved prospectively collected endoscopic videos from eight patients with B‐4 gastric cancer and 148 controls. For external validation, endoscopic images and videos from patients with B‐4 gastric cancer and controls at the Seoul National University Bundang Hospital were used. To calculate patient‐based accuracy, sensitivity, and specificity, a diagnosis of B‐4 was made for patients in whom greater than 50% of the images were identified as B‐4 gastric cancer. Results The accuracy of the patient‐based diagnosis was highest in the internal image test set, with accuracy, sensitivity, and specificity of 93.22%, 92.86%, and 93.39%, respectively. The accuracy of the model in the internal validation videos, the external validation images, and the external validation videos was 91.03%, 91.86%, and 86.71%, respectively. Notably, in both the internal and external video sets, the AI model demonstrated 100% sensitivity for diagnosing patients who had B‐4 gastric cancer. Conclusions An innovative AI‐based model was developed to identify B‐4 gastric cancer using endoscopic images. This AI model is specialized for the highly sensitive detection of rare B‐4 gastric cancer and is expected to assist clinicians in real‐time endoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
7777juju完成签到,获得积分10
2秒前
李欣超完成签到 ,获得积分10
3秒前
Lucas应助小鲨鱼采纳,获得10
3秒前
3秒前
wzl12306完成签到,获得积分10
3秒前
Lucifer发布了新的文献求助10
4秒前
搞怪的友桃完成签到,获得积分10
4秒前
4秒前
blackbird完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
笨笨翰完成签到,获得积分10
5秒前
5秒前
科研通AI6应助houruibut采纳,获得10
5秒前
caizhizhao发布了新的文献求助10
5秒前
平常的仙人掌完成签到,获得积分10
6秒前
丘比特应助知了采纳,获得10
6秒前
6秒前
qinxue完成签到,获得积分10
6秒前
孙漪发布了新的文献求助10
6秒前
ShawnJohn应助可不是我嘛采纳,获得10
6秒前
7秒前
7秒前
JingZZ完成签到,获得积分20
7秒前
宜菏发布了新的文献求助10
7秒前
hallo完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
gy发布了新的文献求助10
8秒前
8秒前
9秒前
康康完成签到,获得积分10
9秒前
踏实的初珍完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274