Application of artificial intelligence in the detection of Borrmann type 4 advanced gastric cancer in upper endoscopy (with video)

医学 内窥镜检查 癌症 癌症检测 人工智能 内科学 胃肠病学 计算机科学
作者
Mi Jin Oh,Jinbae Park,Jiwoon Jeon,Mina Park,Seungkyung Kang,Su Hyun Kim,Su Hee Park,Young Hoon Chang,Cheol Min Shin,Seung Joo Kang,Seung‐Han Lee,Sang Gyun Kim,Soo‐Jeong Cho
出处
期刊:Cancer [Wiley]
卷期号:131 (4): e35768-e35768
标识
DOI:10.1002/cncr.35768
摘要

Abstract Background Borrmann type‐4 (B‐4) advanced gastric cancer is challenging to diagnose through routine endoscopy, leading to a poor prognosis. The objective of this study was to develop an artificial intelligence (AI)‐based system capable of detecting B‐4 gastric cancers using upper endoscopy. Methods Endoscopic images from 259 patients who were diagnosed with B‐4 gastric cancer and 595 controls who had benign conditions were retrospectively collected from Seoul National University Hospital for training and testing. Internal validation involved prospectively collected endoscopic videos from eight patients with B‐4 gastric cancer and 148 controls. For external validation, endoscopic images and videos from patients with B‐4 gastric cancer and controls at the Seoul National University Bundang Hospital were used. To calculate patient‐based accuracy, sensitivity, and specificity, a diagnosis of B‐4 was made for patients in whom greater than 50% of the images were identified as B‐4 gastric cancer. Results The accuracy of the patient‐based diagnosis was highest in the internal image test set, with accuracy, sensitivity, and specificity of 93.22%, 92.86%, and 93.39%, respectively. The accuracy of the model in the internal validation videos, the external validation images, and the external validation videos was 91.03%, 91.86%, and 86.71%, respectively. Notably, in both the internal and external video sets, the AI model demonstrated 100% sensitivity for diagnosing patients who had B‐4 gastric cancer. Conclusions An innovative AI‐based model was developed to identify B‐4 gastric cancer using endoscopic images. This AI model is specialized for the highly sensitive detection of rare B‐4 gastric cancer and is expected to assist clinicians in real‐time endoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千暮完成签到,获得积分10
1秒前
善学以致用应助One采纳,获得10
1秒前
JamesPei应助洁净凝阳采纳,获得10
2秒前
kll完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助羊羊采纳,获得10
4秒前
vvvg发布了新的文献求助10
5秒前
5秒前
percy完成签到 ,获得积分10
10秒前
旋木发布了新的文献求助10
11秒前
大模型应助激情的诗柳采纳,获得10
13秒前
寇博翔发布了新的文献求助10
13秒前
14秒前
15秒前
临风不自傲完成签到 ,获得积分10
15秒前
15秒前
ljq完成签到,获得积分10
17秒前
愤怒的凤发布了新的文献求助10
19秒前
20秒前
GDN完成签到 ,获得积分10
20秒前
20秒前
鸡鱼蚝发布了新的文献求助10
21秒前
张天宇完成签到,获得积分10
22秒前
23秒前
24秒前
科研通AI6应助鸡鱼蚝采纳,获得10
24秒前
潺潺流水完成签到,获得积分10
24秒前
ZH完成签到 ,获得积分10
24秒前
李健的粉丝团团长应助One采纳,获得10
24秒前
bzk完成签到 ,获得积分10
26秒前
26秒前
满意外套完成签到 ,获得积分10
26秒前
387发布了新的文献求助30
27秒前
zzz完成签到 ,获得积分10
28秒前
29秒前
激情的诗柳完成签到,获得积分10
31秒前
treasure发布了新的文献求助30
35秒前
天涯完成签到,获得积分10
36秒前
Sxq完成签到,获得积分10
37秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316