清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of artificial intelligence in the detection of Borrmann type 4 advanced gastric cancer in upper endoscopy (with video)

医学 内窥镜检查 癌症 癌症检测 人工智能 内科学 胃肠病学 计算机科学
作者
Mi Jin Oh,Jinbae Park,Jiwoon Jeon,Mina Park,Seungkyung Kang,Su Hyun Kim,Su Hee Park,Young Hoon Chang,Cheol Min Shin,Seung Joo Kang,Seung‐Han Lee,Sang Gyun Kim,Soo‐Jeong Cho
出处
期刊:Cancer [Wiley]
卷期号:131 (4): e35768-e35768
标识
DOI:10.1002/cncr.35768
摘要

Abstract Background Borrmann type‐4 (B‐4) advanced gastric cancer is challenging to diagnose through routine endoscopy, leading to a poor prognosis. The objective of this study was to develop an artificial intelligence (AI)‐based system capable of detecting B‐4 gastric cancers using upper endoscopy. Methods Endoscopic images from 259 patients who were diagnosed with B‐4 gastric cancer and 595 controls who had benign conditions were retrospectively collected from Seoul National University Hospital for training and testing. Internal validation involved prospectively collected endoscopic videos from eight patients with B‐4 gastric cancer and 148 controls. For external validation, endoscopic images and videos from patients with B‐4 gastric cancer and controls at the Seoul National University Bundang Hospital were used. To calculate patient‐based accuracy, sensitivity, and specificity, a diagnosis of B‐4 was made for patients in whom greater than 50% of the images were identified as B‐4 gastric cancer. Results The accuracy of the patient‐based diagnosis was highest in the internal image test set, with accuracy, sensitivity, and specificity of 93.22%, 92.86%, and 93.39%, respectively. The accuracy of the model in the internal validation videos, the external validation images, and the external validation videos was 91.03%, 91.86%, and 86.71%, respectively. Notably, in both the internal and external video sets, the AI model demonstrated 100% sensitivity for diagnosing patients who had B‐4 gastric cancer. Conclusions An innovative AI‐based model was developed to identify B‐4 gastric cancer using endoscopic images. This AI model is specialized for the highly sensitive detection of rare B‐4 gastric cancer and is expected to assist clinicians in real‐time endoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的行云完成签到 ,获得积分0
9秒前
Jenny发布了新的文献求助10
10秒前
jiabu完成签到 ,获得积分10
17秒前
huiluowork完成签到 ,获得积分10
18秒前
王科婷完成签到 ,获得积分10
27秒前
sevenhill完成签到 ,获得积分0
57秒前
开心每一天完成签到 ,获得积分10
1分钟前
1分钟前
王波完成签到 ,获得积分10
1分钟前
研友_LpvQlZ完成签到,获得积分10
1分钟前
Chen完成签到 ,获得积分10
1分钟前
chichenglin完成签到 ,获得积分0
1分钟前
juliar完成签到 ,获得积分10
2分钟前
121卡卡完成签到 ,获得积分10
2分钟前
Kevin完成签到 ,获得积分10
2分钟前
小药童应助科研通管家采纳,获得10
2分钟前
望向天空的鱼完成签到 ,获得积分10
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
2分钟前
Alex-Song完成签到 ,获得积分0
3分钟前
3分钟前
徐凤年完成签到,获得积分10
3分钟前
tingalan完成签到,获得积分0
3分钟前
鱼儿游完成签到 ,获得积分10
3分钟前
3分钟前
chengmin完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
愤怒的念蕾完成签到,获得积分10
4分钟前
斯文败类应助小豹子采纳,获得10
4分钟前
KYTQQ完成签到 ,获得积分10
4分钟前
zhangsan完成签到,获得积分10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
谭文完成签到 ,获得积分10
4分钟前
yanj520925完成签到,获得积分20
4分钟前
yanj520925发布了新的文献求助10
4分钟前
4分钟前
xiaoyi完成签到 ,获得积分10
5分钟前
清脆的靖仇完成签到,获得积分10
5分钟前
qaz111222完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555062
求助须知:如何正确求助?哪些是违规求助? 4639610
关于积分的说明 14656439
捐赠科研通 4581593
什么是DOI,文献DOI怎么找? 2512865
邀请新用户注册赠送积分活动 1487557
关于科研通互助平台的介绍 1458561