Single-pixel imaging with TCAO and untrained neural network

计算机科学 人工智能 深度学习 稳健性(进化) 像素 卷积神经网络 计算机视觉 人工神经网络 特征提取 迭代重建 模式识别(心理学) 采样(信号处理) 特征(语言学) 生物化学 化学 语言学 哲学 滤波器(信号处理) 基因
作者
Jinyi Deng,Shuang Yu,Wenqing Hong,Xiaojun Li,Haoteng Yin
标识
DOI:10.1117/12.3048060
摘要

Single-pixel imaging (SPI) is a rapidly evolving computational imaging technique that reconstructs scenes by correlating modulation patterns with measurements captured by a single-pixel detector. Recent advances suggest that integrating model-driven deep learning can significantly enhance the reconstruction quality and robustness of SPI. However, current model-driven SPI methods often rely on ghost imaging (DGI) with random speckles as network input, requiring deeper reconstruction networks to extract effective features, which increases the computational cost. Additionally, random speckles can cause important image details to be obscured by noise at lower sampling rates, making it challenging for the network to produce satisfactory reconstructions. To overcome these limitations, we propose a model-driven SPI method that utilizes an optimized sorting of the Hadamard matrix, termed Total Change Ascending Order (TCAO), as the modulation mask, coupled with an untrained convolutional neural network (CNN) for reconstruction. TCAO is designed to more effectively extract information from scenes at lower sampling rates. The core innovation is integrating deep learning principles across the entire imaging process, assigning more feature extraction tasks to the modulation stage. We refer to this approach as Deep Learning-Based Single-Pixel Imaging with Efficient Sampling (DLES). Simulation results show that DLES allows the network to focus on enhancing reconstruction performance, yielding superior results at lower and even extremely low sampling rates. This method provides a novel approach to simplifying model-driven neural networks while improving the efficiency and quality of single-pixel imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助阿星捌采纳,获得10
刚刚
GothamKnight完成签到,获得积分10
刚刚
xiaoya完成签到,获得积分10
1秒前
1秒前
Owen应助余琳采纳,获得10
1秒前
Akim应助离明采纳,获得10
2秒前
愫浅发布了新的文献求助10
2秒前
Wiesen发布了新的文献求助10
2秒前
大个应助Faith采纳,获得10
2秒前
2秒前
3秒前
chyzc发布了新的文献求助10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
BL发布了新的文献求助10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
6秒前
俺村俺最牛完成签到,获得积分10
6秒前
meanfun完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
meanfun发布了新的文献求助10
8秒前
火龙果发布了新的文献求助30
8秒前
思源应助不低头采纳,获得10
9秒前
小鹿呀发布了新的文献求助10
9秒前
愫浅完成签到,获得积分10
10秒前
结实的凉面完成签到,获得积分10
10秒前
龙江游侠发布了新的文献求助10
10秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470844
求助须知:如何正确求助?哪些是违规求助? 3063847
关于积分的说明 9085670
捐赠科研通 2754320
什么是DOI,文献DOI怎么找? 1511386
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253