Icing Time Prediction Model of Pavement Based on an Improved SVR Model with Response Surface Approach

粒子群优化 支持向量机 均方误差 结冰 计算机科学 适应度函数 数学优化 趋同(经济学) 算法 数学 机器学习 遗传算法 统计 海洋学 经济增长 经济 地质学
作者
Lingxiao Shangguan,Yuan-Qi Yin,Qingtao Zhang,Qun Li,Wei Xie,Dong Zhang
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (16): 8109-8109 被引量:1
标识
DOI:10.3390/app12168109
摘要

Pavement icing imposes a great threat to driving safety and impacts the efficiency of the road transportation system in cold regions. This has attracted research predicting pavement icing time to solve the problems brought about by icing. Different models have been proposed in the past decades to predict pavement icing, within which support vector regression (SVR) is a widely used algorithm for calibrating highly nonlinear relationships. This paper presents a hybrid improved SVR algorithm to predict the time of pavement icing with an enhancement operation by response surface method (RSM) and particle swarm optimization (PSO). RSM is used to increase the number of input data collected onsite. Based on that, the optimal SVR model is established by optimizing the kernel function parameters and penalty coefficient with the particle swarm optimization (PSO) algorithm. The hybrid improved SVR is compared with SVR, PSO-SVR, and RSM-PSO for coefficient of determination (R2), mean absolute error, mean absolute percentage error, and root mean square error to check the effectiveness of PSO and RSM in optimizing SVR. The results show that the combination of two methods in the hybrid improved algorithm has a better optimization capability with R2 of 0.9655 and 0.9318 in a train set and test set, respectively, which outperforms PSO-SVR, RSM-SVR, and SVR. In addition, the R2 of the hybrid improved SVR and PSO-SVR both reach the optimal fitness value approximately at the iteration of 20, which suggests that convergence capacity remains relatively constant with the predictive accuracy being improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fay1987完成签到,获得积分10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
刚刚
vvwwvv完成签到 ,获得积分10
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
萌萌许应助科研通管家采纳,获得10
刚刚
刚刚
Aganlin发布了新的文献求助30
1秒前
1秒前
1秒前
简单完成签到,获得积分10
1秒前
兴奋如松完成签到,获得积分20
2秒前
优雅的纸鹤应助粥可温采纳,获得10
2秒前
宋芝恬完成签到,获得积分10
2秒前
科研岳完成签到,获得积分10
3秒前
cd发布了新的文献求助10
4秒前
阔达的太阳完成签到,获得积分10
5秒前
5秒前
含蓄的小熊猫完成签到 ,获得积分10
5秒前
热心雁易完成签到,获得积分10
5秒前
6秒前
大智发布了新的文献求助10
6秒前
毛豆应助ZY采纳,获得10
7秒前
Dfish完成签到,获得积分10
7秒前
kouryoufu完成签到,获得积分10
8秒前
Hyc28441711完成签到,获得积分10
8秒前
饱满的海秋完成签到,获得积分20
8秒前
雨墨幻山完成签到,获得积分10
9秒前
研友_QQC完成签到,获得积分10
9秒前
iNk应助ding采纳,获得20
10秒前
毛豆应助cd采纳,获得10
10秒前
yanyan_alice完成签到,获得积分10
10秒前
长情绿凝完成签到,获得积分10
10秒前
杏梨完成签到,获得积分10
11秒前
leclerc完成签到,获得积分10
12秒前
若水发布了新的文献求助10
13秒前
韶芸遥完成签到,获得积分10
14秒前
zwy完成签到,获得积分10
15秒前
无相完成签到 ,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450572
求助须知:如何正确求助?哪些是违规求助? 3046089
关于积分的说明 9004332
捐赠科研通 2734767
什么是DOI,文献DOI怎么找? 1500127
科研通“疑难数据库(出版商)”最低求助积分说明 693369
邀请新用户注册赠送积分活动 691542