Icing Time Prediction Model of Pavement Based on an Improved SVR Model with Response Surface Approach

粒子群优化 支持向量机 均方误差 结冰 计算机科学 适应度函数 数学优化 趋同(经济学) 算法 数学 机器学习 遗传算法 统计 海洋学 经济增长 经济 地质学
作者
Lingxiao Shangguan,Yuan-Qi Yin,Qingtao Zhang,Qun Li,Wei Xie,Dong Zhang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (16): 8109-8109 被引量:1
标识
DOI:10.3390/app12168109
摘要

Pavement icing imposes a great threat to driving safety and impacts the efficiency of the road transportation system in cold regions. This has attracted research predicting pavement icing time to solve the problems brought about by icing. Different models have been proposed in the past decades to predict pavement icing, within which support vector regression (SVR) is a widely used algorithm for calibrating highly nonlinear relationships. This paper presents a hybrid improved SVR algorithm to predict the time of pavement icing with an enhancement operation by response surface method (RSM) and particle swarm optimization (PSO). RSM is used to increase the number of input data collected onsite. Based on that, the optimal SVR model is established by optimizing the kernel function parameters and penalty coefficient with the particle swarm optimization (PSO) algorithm. The hybrid improved SVR is compared with SVR, PSO-SVR, and RSM-PSO for coefficient of determination (R2), mean absolute error, mean absolute percentage error, and root mean square error to check the effectiveness of PSO and RSM in optimizing SVR. The results show that the combination of two methods in the hybrid improved algorithm has a better optimization capability with R2 of 0.9655 and 0.9318 in a train set and test set, respectively, which outperforms PSO-SVR, RSM-SVR, and SVR. In addition, the R2 of the hybrid improved SVR and PSO-SVR both reach the optimal fitness value approximately at the iteration of 20, which suggests that convergence capacity remains relatively constant with the predictive accuracy being improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ATOM完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助Cookies采纳,获得10
2秒前
2秒前
懒羊羊完成签到,获得积分20
3秒前
3秒前
RAnDw发布了新的文献求助30
3秒前
壮观的擎发布了新的文献求助10
3秒前
4秒前
一一高速下载文献没有问题完成签到,获得积分10
4秒前
爆米花应助wxr采纳,获得10
4秒前
5秒前
哈哈发布了新的文献求助10
5秒前
觱栗完成签到,获得积分10
6秒前
懒羊羊发布了新的文献求助10
9秒前
小智发布了新的文献求助10
9秒前
不达鸟完成签到,获得积分10
9秒前
9秒前
9秒前
dwx0529完成签到,获得积分10
9秒前
田様应助鱼我所厌也采纳,获得10
10秒前
11秒前
执着谷兰发布了新的文献求助10
11秒前
11秒前
完美世界应助个性跳跳糖采纳,获得10
11秒前
12秒前
落后的宛菡完成签到,获得积分10
12秒前
tt11111发布了新的文献求助10
12秒前
13秒前
研友_LMo56Z发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
沉静的煎蛋完成签到,获得积分10
14秒前
Ferroptosis发布了新的文献求助20
14秒前
良辰应助畅快太君采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
刘钱美子发布了新的文献求助10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798