PVC gel smart sensor for robotics sensing applications: an experimental and finite element simulation study <sup>*</sup>

多物理 有限元法 机器人学 软机器人 背景(考古学) 智能材料 材料科学 聚氯乙烯 压缩(物理) 变形(气象学) 计算机科学 机械工程 人工智能 复合材料 机器人 工程类 结构工程 生物 古生物学
作者
Montassar Aidi Sharif
出处
期刊:Engineering research express [IOP Publishing]
卷期号:4 (3): 035029-035029 被引量:1
标识
DOI:10.1088/2631-8695/ac852b
摘要

Abstract Research is now being done on soft electroactive polymers (EAPs), such as polyvinyl chloride (PVC) gel, as an example, for use in soft robotics and smart sensors. Although the sensing behavior of PVC gel has not yet been thoroughly investigated, it has been determined that this material reacts in some way to the stimuli that come from the outside. PVC gels are being utilized to construct a broad variety of different kinds of smart sensors due to the fact that their deformation may be endlessly configured by variations in electrode arrangement, applied mechanical stress, and the amount of plasticizer contained within the gel. In this study, experimental characterizations and the results of finite element simulations are discussed for a PVC gel compression sensor. The finite element simulation of what happens to PVC gel when it is compressed from the outside using mechanical force has been built using the COMSOL Multiphysics, which is a finite element simulation software. Additional experimental measurements of PVC gels are carried out in order to validate the underlying principles that have been presented thus far by providing context for the results of the simulations and to validate the findings effectively. Based on the findings, it appears that the suggested sensor is able to detect compression at a variety of amplitudes and rates . This study sheds light on the sensing capabilities of PVC gel in sensing investigations and provides a framework for conducting such investigations, thereby laying the groundwork for an increase in the use of PVC gel sensors in soft robotics research in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_LXdbaL发布了新的文献求助30
1秒前
思源应助单薄新烟采纳,获得10
2秒前
2秒前
3秒前
Zz完成签到,获得积分10
3秒前
Prandtl完成签到 ,获得积分10
5秒前
6秒前
zfzf0422完成签到 ,获得积分10
7秒前
上官若男应助jackie采纳,获得10
7秒前
7秒前
我是站长才怪应助Benliu采纳,获得20
8秒前
8秒前
zh20130完成签到,获得积分10
8秒前
8秒前
TT发布了新的文献求助10
9秒前
Star1983发布了新的文献求助10
9秒前
研友_LXdbaL完成签到,获得积分10
10秒前
11秒前
在水一方应助66采纳,获得10
12秒前
12秒前
12秒前
缘一发布了新的文献求助10
13秒前
junzilan发布了新的文献求助10
14秒前
CipherSage应助赖道之采纳,获得10
15秒前
ccc完成签到,获得积分10
15秒前
15秒前
15秒前
18秒前
Pauline完成签到,获得积分10
20秒前
jackie发布了新的文献求助10
20秒前
笨笨摇伽发布了新的文献求助10
22秒前
科目三应助皓月繁星采纳,获得10
22秒前
tomato完成签到,获得积分20
24秒前
CodeCraft应助缘一采纳,获得10
25秒前
小二郎应助刘铭晨采纳,获得10
25秒前
25秒前
大个应助风雨1210采纳,获得10
25秒前
一壶清酒完成签到,获得积分10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808