Soil organic carbon (SOC) prediction in Australian sugarcane fields using Vis–NIR spectroscopy with different model setting approaches

土壤碳 随机森林 偏最小二乘回归 决定系数 校准 一致相关系数 表土 土壤科学 相关系数 环境科学 支持向量机 遥感 数学 统计 土壤水分 计算机科学 机器学习 地质学
作者
Xueyu Zhao,Dongxue Zhao,Jie Wang,John Triantafilis
出处
期刊:Geoderma Regional [Elsevier]
卷期号:30: e00566-e00566 被引量:16
标识
DOI:10.1016/j.geodrs.2022.e00566
摘要

To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visible–near infrared (Vis–NIR) spectroscopy library. Herein, a Vis–NIR library is developed to predict topsoil (0–0.3 m) SOC using partial least squares regression (PLSR) and machine learning (i.e., Cubist, random forest [RF] and support vector machine [SVM]) in four sugarcane districts (i.e., Mossman, Lannercost, Herbert, and Proserpine). Different approaches were compared (i.e., site-specific, site-independent, hold-out and spiking) with spike size also considered. In all comparisons, a consistent set of calibration and validation data were used. The calibration coefficient of determination (R2) was always strong (> 0.7), and generally better than the validation R2, regardless of the modelling approach, district, or spike size. For the validation, the Lin's concordance correlation coefficient (LCCC) showed PLSR (0.92, and 0.9) and Cubist (0.91 and 0.9) were close to perfect (> 0.9) for site-specific and site-independent, respectively. This was not the case for hold-out, with only strong R2 (0.71) and substantial agreement (0.80) in Herbert using Cubist and moderate overall using PLSR. Similar results were achieved in terms of the accuracy considering the ratio of performance to interquartile (RPIQ), whereby overall site-specific and site-independent approaches had excellent accuracy (> 2.5) with Cubist slightly more accurate than PLSR. Hold-out accuracy was generally very poor (< 1.4). Spiking the hold-out data sets produced mixed results with prediction R2, agreement and accuracy respectively best in Lannercost with 70 or more samples using PLSR (strong, substantial and excellent) and Hebert with 10 or more using Cubist (strong, near perfect and excellent), while in Mossman with 50 or more samples using SVM (very weak, poor and fair) and Proserpine with 30 or more samples using Cubist (weak, moderate and fair) the results were not as good. It can be concluded that either site-specific or site-independent approach to calibration and prediction using either PLSR or Cubist was best, with the use of the latter approach being more efficient and allowing for the potential to add to this spectral library when new samples from each area or new areas can be added.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
+青鸟发布了新的文献求助10
刚刚
roaring完成签到,获得积分10
刚刚
IAMXC发布了新的文献求助10
1秒前
余江蝉关注了科研通微信公众号
1秒前
传统的裘完成签到,获得积分10
1秒前
DraGon发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
吃馒头的包子完成签到,获得积分10
4秒前
伽俽完成签到,获得积分10
4秒前
Ava应助kirirto采纳,获得10
4秒前
星期五完成签到 ,获得积分10
4秒前
pinghu完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
优雅的小海豚完成签到,获得积分20
7秒前
华仔应助柔弱小之采纳,获得10
7秒前
7秒前
拉拉发布了新的文献求助10
8秒前
完美世界应助IAMXC采纳,获得30
8秒前
一雁飞发布了新的文献求助10
9秒前
于广喜发布了新的文献求助10
9秒前
10秒前
董小鱼完成签到,获得积分10
10秒前
DraGon完成签到,获得积分10
10秒前
11秒前
畅快白梦发布了新的文献求助10
11秒前
呆萌刺猬完成签到 ,获得积分10
11秒前
Tian发布了新的文献求助10
12秒前
12秒前
有灵魅完成签到,获得积分10
12秒前
12秒前
田様应助djdh采纳,获得10
13秒前
13秒前
JamesPei应助静好采纳,获得30
13秒前
风寒发布了新的文献求助30
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449