Optimization and model-based control of sustainable ethyl-methyl carbonate and diethyl carbonate synthesis through reactive distillation

反应蒸馏 碳酸二苯酯 碳酸二乙酯 沉降时间 工艺工程 PID控制器 碳酸盐 超调(微波通信) 酯交换 控制理论(社会学) 化学 工程类 计算机科学 蒸馏 控制工程 电解质 控制(管理) 碳酸乙烯酯 色谱法 温度控制 有机化学 电极 物理化学 人工智能 阶跃响应 催化作用 电气工程
作者
Xiaolong Ge,Yicheng Han,Pengfei Liu,Botan Liu,Botong Liu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:370: 133618-133618 被引量:13
标识
DOI:10.1016/j.jclepro.2022.133618
摘要

As excellent solvents of lithum-ion electrolyte, ethyl-methyl carbonate (EMC) and diethyl carbonate (DEC) are synthesized through transesterification of dimethly carbonate (DMC) and ethanol. Process intensification, optimization and the corresponding control scheme of the synthesized process are essential when sustainability is becoming a necessity. In the present work, the intensified flowsheet for EMC and DEC production process was firstly proposed and optimized with conventional reactive distillation (RD) and reactive dividing wall column (RDWC), respectively. Compared with RD process, RDWC could achieve 25.3% and 8.2% total annualized cost reduction for EMC and DEC production process, respectively. And carbon dioxide emission could be decreased by 29.4% and 11.7% by further integrating RD and separation column into RDWC arrangement for DEC and EMC production. Then multi-loop PI control schemes were developed as benchmark and linear model predictive controller was designed to handle the persistent feed disturbance. The superiorities of model-based controllers for the strongly interactive and coupled system are demonstrated by the dynamic response comparisons in terms of settling time, overshoot and integral of squared error (ISE), especially for the controlled variables with poor control performance under conventional multi-loop PI control structure. To summarize, the comprehensive control performance index-ISE with MPC is reduced by 55.9%–99.1%, as compared to those under PI control strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助isabellae采纳,获得10
刚刚
开花不铁树完成签到,获得积分20
1秒前
2秒前
852应助鸡蛋灌饼与掉渣饼采纳,获得10
2秒前
2秒前
3秒前
Criminology34应助二五九采纳,获得10
5秒前
晚星发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
星空发布了新的文献求助10
10秒前
文献发布了新的文献求助30
12秒前
13秒前
13秒前
14秒前
16秒前
17秒前
Rachel完成签到,获得积分10
18秒前
codwest完成签到,获得积分10
18秒前
19秒前
19秒前
越旻完成签到,获得积分10
20秒前
zxj完成签到,获得积分10
20秒前
20秒前
喜欢猫发布了新的文献求助10
20秒前
酷炫的爆米花完成签到,获得积分10
21秒前
李爱国应助西海沉采纳,获得10
21秒前
Orange应助方法采纳,获得10
21秒前
21秒前
沉静亿先完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
研友_5Zl9D8发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690