Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach

中心性 向心力 中间性中心性 网络拓扑 计算机科学 启发式 网络科学 最大化 节点(物理) 拓扑(电路) 复杂网络 数学优化 数据挖掘 数学 人工智能 工程类 计算机网络 统计 结构工程 组合数学 物理 万维网 机械
作者
Yan Wang,Haozhan Li,Ling Zhang,Linlin Zhao,Wanlan Li
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:162: 112513-112513 被引量:29
标识
DOI:10.1016/j.chaos.2022.112513
摘要

Identifying influential nodes in a network is vital for the study of social network structure and to facilitate the dissemination of requisite information. The challenge we address is that, given a complex network, which nodes are more important? How can a group of disseminators be identified and selected to maximize any given field of influence? A series of centrality measures are proposed from different perspectives based on the topology of nodes. However existing methods suffer from problems that are intrinsic to singular consideration of node topology information, and they neglect the connection relationship between nodes when filtering the spreaders, resulting in imprecise evaluation results and limited spread scale. To solve this issue, this paper proposes a new centrality, inspired by the centripetal force formula. Centripetal centrality combines global, and local, as well as semi-local topological information about the nodes resulting in a more comprehensive evaluation. For the problems related to influence maximization, we propose a heuristic algorithm called seed exclusion (SE) that filters propagators. To demonstrate the performance of the proposed measures, we conducted experiments on both real-world and synthetic networks by comparing distinct metrics, improvements in network efficiency, the propagation of nodes under the SIR model and the average shortest distance between spreaders. The experimental results show that the proposed centripetal centrality is more accurate and effective than similar measures, while comparison with baselines the SE algorithm significantly improves spread speed and infection scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
润润轩轩发布了新的文献求助10
1秒前
1秒前
orixero应助韭黄采纳,获得10
2秒前
gnufgg完成签到,获得积分10
2秒前
科研通AI5应助tabor采纳,获得10
2秒前
2秒前
互助互惠互通完成签到,获得积分10
2秒前
脑洞疼应助ziyiziyi采纳,获得10
3秒前
3秒前
3秒前
屹舟完成签到,获得积分10
4秒前
zjudxn关注了科研通微信公众号
4秒前
5秒前
5秒前
科研通AI5应助hu970采纳,获得10
5秒前
5秒前
艺玲发布了新的文献求助10
6秒前
咚咚咚完成签到,获得积分10
6秒前
芋圆Z.完成签到,获得积分10
6秒前
atad2发布了新的文献求助10
6秒前
li梨完成签到,获得积分10
6秒前
7秒前
晏小敏完成签到,获得积分10
7秒前
爆米花应助风中寄云采纳,获得10
8秒前
屹舟发布了新的文献求助10
8秒前
Dou完成签到,获得积分10
8秒前
白泯完成签到,获得积分10
9秒前
1ssd发布了新的文献求助10
9秒前
667发布了新的文献求助10
9秒前
小二郎应助辰柒采纳,获得10
10秒前
11秒前
11秒前
clear完成签到,获得积分20
11秒前
11秒前
orixero应助congguitar采纳,获得10
11秒前
Evan完成签到,获得积分10
11秒前
YANG发布了新的文献求助10
12秒前
12秒前
123发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759