Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach

中心性 向心力 中间性中心性 网络拓扑 计算机科学 启发式 网络科学 最大化 节点(物理) 拓扑(电路) 复杂网络 数学优化 数据挖掘 数学 人工智能 工程类 计算机网络 统计 结构工程 组合数学 物理 万维网 机械
作者
Yan Wang,Haozhan Li,Ling Zhang,Linlin Zhao,Wanlan Li
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:162: 112513-112513 被引量:29
标识
DOI:10.1016/j.chaos.2022.112513
摘要

Identifying influential nodes in a network is vital for the study of social network structure and to facilitate the dissemination of requisite information. The challenge we address is that, given a complex network, which nodes are more important? How can a group of disseminators be identified and selected to maximize any given field of influence? A series of centrality measures are proposed from different perspectives based on the topology of nodes. However existing methods suffer from problems that are intrinsic to singular consideration of node topology information, and they neglect the connection relationship between nodes when filtering the spreaders, resulting in imprecise evaluation results and limited spread scale. To solve this issue, this paper proposes a new centrality, inspired by the centripetal force formula. Centripetal centrality combines global, and local, as well as semi-local topological information about the nodes resulting in a more comprehensive evaluation. For the problems related to influence maximization, we propose a heuristic algorithm called seed exclusion (SE) that filters propagators. To demonstrate the performance of the proposed measures, we conducted experiments on both real-world and synthetic networks by comparing distinct metrics, improvements in network efficiency, the propagation of nodes under the SIR model and the average shortest distance between spreaders. The experimental results show that the proposed centripetal centrality is more accurate and effective than similar measures, while comparison with baselines the SE algorithm significantly improves spread speed and infection scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钮黎昕发布了新的文献求助10
刚刚
1秒前
NW发布了新的文献求助10
1秒前
桐桐应助hr采纳,获得10
1秒前
田様应助Alan采纳,获得10
1秒前
2秒前
NMSL完成签到,获得积分20
2秒前
Cmax_发布了新的文献求助30
2秒前
小帅发布了新的文献求助10
2秒前
wendy发布了新的文献求助10
2秒前
2秒前
2秒前
李爽完成签到 ,获得积分10
3秒前
微笑友容发布了新的文献求助10
3秒前
4秒前
乐观的海发布了新的文献求助10
4秒前
我先睡了发布了新的文献求助10
4秒前
Salt发布了新的文献求助10
4秒前
沁814发布了新的文献求助10
4秒前
大个应助牵绊采纳,获得10
5秒前
wlscj应助琪凯定理采纳,获得20
5秒前
Alex应助夜神月采纳,获得20
6秒前
星辰大海应助tttt采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
不倦应助拉长的念露采纳,获得10
8秒前
CC66发布了新的文献求助10
8秒前
cijing发布了新的文献求助10
9秒前
9秒前
9秒前
快乐小子发布了新的文献求助10
10秒前
10秒前
暮时完成签到 ,获得积分10
11秒前
11秒前
11秒前
ding应助标致曼荷采纳,获得10
11秒前
13秒前
00发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879