Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach

中心性 向心力 中间性中心性 网络拓扑 计算机科学 启发式 网络科学 最大化 节点(物理) 拓扑(电路) 复杂网络 数学优化 数据挖掘 数学 人工智能 工程类 计算机网络 统计 物理 结构工程 组合数学 万维网 机械
作者
Yan Wang,Haozhan Li,Ling Zhang,Linlin Zhao,Wanlan Li
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:162: 112513-112513 被引量:29
标识
DOI:10.1016/j.chaos.2022.112513
摘要

Identifying influential nodes in a network is vital for the study of social network structure and to facilitate the dissemination of requisite information. The challenge we address is that, given a complex network, which nodes are more important? How can a group of disseminators be identified and selected to maximize any given field of influence? A series of centrality measures are proposed from different perspectives based on the topology of nodes. However existing methods suffer from problems that are intrinsic to singular consideration of node topology information, and they neglect the connection relationship between nodes when filtering the spreaders, resulting in imprecise evaluation results and limited spread scale. To solve this issue, this paper proposes a new centrality, inspired by the centripetal force formula. Centripetal centrality combines global, and local, as well as semi-local topological information about the nodes resulting in a more comprehensive evaluation. For the problems related to influence maximization, we propose a heuristic algorithm called seed exclusion (SE) that filters propagators. To demonstrate the performance of the proposed measures, we conducted experiments on both real-world and synthetic networks by comparing distinct metrics, improvements in network efficiency, the propagation of nodes under the SIR model and the average shortest distance between spreaders. The experimental results show that the proposed centripetal centrality is more accurate and effective than similar measures, while comparison with baselines the SE algorithm significantly improves spread speed and infection scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助GoodMorning采纳,获得10
刚刚
SARON完成签到 ,获得积分10
刚刚
星河梦枕完成签到,获得积分10
刚刚
易义德发布了新的文献求助10
1秒前
收手吧大哥应助111111采纳,获得10
1秒前
JZa完成签到,获得积分10
1秒前
1秒前
2秒前
FakeJoker完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
3秒前
zq完成签到 ,获得积分10
3秒前
孔雨欣发布了新的文献求助10
3秒前
奋斗靖仇完成签到 ,获得积分10
3秒前
4秒前
4秒前
orixero应助mama采纳,获得10
4秒前
cyw_1037405062完成签到,获得积分10
6秒前
Kelly完成签到,获得积分10
6秒前
科研通AI6应助忧伤的映菱采纳,获得10
6秒前
大气凡之完成签到,获得积分10
6秒前
猪头完成签到,获得积分10
7秒前
壮观溪流完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Exotic发布了新的文献求助10
8秒前
9秒前
安详靖柏发布了新的文献求助10
9秒前
10秒前
11秒前
清蒸鱼发布了新的文献求助10
11秒前
11秒前
情怀应助落后乐荷采纳,获得10
11秒前
11秒前
琳琳完成签到,获得积分10
11秒前
12秒前
13秒前
Yasong完成签到 ,获得积分10
13秒前
Twonej应助Synan采纳,获得30
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659115
求助须知:如何正确求助?哪些是违规求助? 4826783
关于积分的说明 15085584
捐赠科研通 4817830
什么是DOI,文献DOI怎么找? 2578374
邀请新用户注册赠送积分活动 1533021
关于科研通互助平台的介绍 1491746