Fitness-distance balance based artificial ecosystem optimisation to solve transient stability constrained optimal power flow problem

计算机科学 数学优化 启发式 瞬态(计算机编程) 理论(学习稳定性) 电力系统 非线性系统 功率平衡 功率(物理) 机器学习 数学 量子力学 操作系统 物理
作者
Yusuf Sönmez,Serhat Duman,Hamdi Tolga Kahraman,Mehmet Katı,Sefa Aras,Uğur Güvenç
出处
期刊:Journal of Experimental and Theoretical Artificial Intelligence [Informa]
卷期号:36 (5): 745-784 被引量:22
标识
DOI:10.1080/0952813x.2022.2104388
摘要

The Transient Stability Constrained Optimal Power Flow (TSCOPF) has become an important tool for power systems today. TSCOPF is a nonlinear optimisation problem, making its solution difficult, especially for small power systems. This paper presents a new optimisation method that incorporates Fitness-Distance Balance (FDB) with the Artificial Ecosystem Optimisation (AEO) algorithm to improve the solution quality in multi-dimensional and nonlinear optimisation problems. The proposed method, named the Fitness-Distance Balance Artificial Ecosystem Optimisation (FDBAEO), also has the capacity to solve the TSCOPF problem efficiently. In order to evaluate the proposed algorithm, it was tested on IEEE CEC benchmarks and on an IEEE 30-bus test system for the TSCOPF problem. Simulation results were compared with the basic AEO algorithm and other current meta-heuristic methods reported in the literature. The results showed that the proposed method was more effective in converging at the global optimum point in solving the TSCOPF problem compared to the other algorithms. This situation indicates that the design changes made in the decomposition phase of the AEO were more suitable for simulating the operation of the algorithm in the real world. The FDBAEO has exhibited a promising performance in solving both single-objective optimisation and constrained real-world engineering design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仚屳完成签到,获得积分10
刚刚
Naixi完成签到,获得积分10
刚刚
今后应助HU采纳,获得10
刚刚
su完成签到 ,获得积分10
2秒前
平淡的依白完成签到,获得积分20
2秒前
xinchengzhu关注了科研通微信公众号
2秒前
爱静静应助tao采纳,获得10
3秒前
iNk应助Rebekah采纳,获得10
3秒前
HopeStar完成签到,获得积分10
4秒前
树叶有专攻完成签到,获得积分10
4秒前
4秒前
田様应助Mia采纳,获得20
4秒前
所所应助吃点红糖馒头采纳,获得10
4秒前
今后应助PSCs采纳,获得10
4秒前
5秒前
duguqiubai4发布了新的文献求助10
5秒前
独特的沛凝完成签到,获得积分10
7秒前
思源应助淇淇怪怪采纳,获得10
7秒前
领导范儿应助徐慕源采纳,获得10
7秒前
听粥完成签到,获得积分10
8秒前
高高迎蓉完成签到,获得积分10
8秒前
豆花完成签到,获得积分10
8秒前
SYLH应助风趣的无剑采纳,获得10
8秒前
悲伤水凝胶完成签到,获得积分10
8秒前
鲸鱼完成签到,获得积分10
10秒前
huangqinxue完成签到,获得积分10
10秒前
11秒前
11秒前
Tina完成签到,获得积分10
11秒前
电催化皮皮完成签到,获得积分10
11秒前
大模型应助阿蒙采纳,获得10
12秒前
duguqiubai4完成签到,获得积分10
12秒前
13秒前
meta完成签到,获得积分10
13秒前
大饼完成签到,获得积分10
14秒前
爆米花应助WJM采纳,获得10
14秒前
xiexuqin完成签到,获得积分10
14秒前
14秒前
silentJeremy发布了新的文献求助200
15秒前
JonyiCheng完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678