Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design

自编码 计算机科学 MNIST数据库 聚类分析 人工智能 机器学习 编码(内存) 特征(语言学) 降维 维数之咒 数据挖掘 深度学习 语言学 哲学
作者
Hugo Wai Leung Mak,Runze Han,Hoover H. F. Yin
标识
DOI:10.20944/preprints202303.0023.v1
摘要

In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capabilities in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possibility and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering was minimally discussed in literature neither. This paper first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model into generating new game levels within two well-known game settings; as well as validating the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments were also utilized for evaluating the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and spatial results, several potential drawbacks and future enhancement of the established model were outlined, with the aim of maximizing the strengths and advantages of VAE for future game design tasks and relevant industrial missions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianguan完成签到,获得积分10
1秒前
小叙完成签到 ,获得积分10
1秒前
infinite完成签到,获得积分10
2秒前
2秒前
2秒前
程公子完成签到,获得积分10
4秒前
Alarack发布了新的文献求助10
5秒前
humorlife完成签到,获得积分10
6秒前
8秒前
9秒前
10秒前
orixero应助kelexh采纳,获得10
10秒前
哇哈哈发布了新的文献求助30
14秒前
周梓萌完成签到,获得积分10
15秒前
科研通AI6应助六哥采纳,获得10
16秒前
蔡蔡完成签到 ,获得积分10
16秒前
17秒前
Amber发布了新的文献求助10
17秒前
glycine完成签到,获得积分10
18秒前
且慢应助cheryjay采纳,获得150
20秒前
晓舟发布了新的文献求助10
21秒前
小鬼完成签到 ,获得积分10
22秒前
风之子完成签到,获得积分10
22秒前
kelexh发布了新的文献求助10
23秒前
123完成签到,获得积分10
23秒前
欢喜的若灵完成签到,获得积分10
24秒前
且慢应助夜信采纳,获得20
24秒前
量子星尘发布了新的文献求助10
25秒前
zhscu完成签到,获得积分10
25秒前
27秒前
善学以致用应助whm采纳,获得10
29秒前
六哥完成签到,获得积分10
30秒前
qing完成签到,获得积分10
30秒前
晓舟完成签到,获得积分20
30秒前
陈永伟完成签到,获得积分10
31秒前
单纯念寒完成签到,获得积分10
31秒前
花生完成签到,获得积分10
31秒前
Jimmy Ko完成签到,获得积分10
33秒前
34秒前
Jimmy Ko发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832