Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy

强化学习 粒子群优化 计算机科学 数学优化 差异进化 突变 趋同(经济学) 早熟收敛 局部最优 操作员(生物学) 最优化问题 人工智能 算法 数学 生物化学 转录因子 经济增长 基因 抑制因子 经济 化学
作者
Wei Li,Peng Liang,Bo Sun,Yafeng Sun,Ying Huang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:78: 101274-101274 被引量:78
标识
DOI:10.1016/j.swevo.2023.101274
摘要

The particle swarm optimization (PSO) algorithm has been one of the most effective methods for solving various engineering optimization problems. Most existing PSO variants frequently use fixed operators, the adoption of a fixed operator learning mode may restrict the intelligence level of each particle, thus reducing the performance of PSO in solving optimization issues with complicated fitness landscapes. To address single goal real-parameter numerical optimization while overcoming the above shortcoming, this paper proposes a reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy (NRLPSO). In NRLPSO, a dynamic oscillation inertial weight (DOW) strategy that provides particles with dynamic adjustment ability in different situations is designed. To resolve the operator selection conundrum of exploration and exploitation, a reinforcement learning-based velocity vector generation (VRL) strategy is developed. At each iteration, particles select the velocity update model based on reinforcement learning, and VRL helps to thoroughly search the problem space. A velocity updating mechanism based on cosine similarity (VCS) is applied to control the velocity learning mode to determine more promising solutions. Furthermore, to alleviate the problem of premature convergence, a local update strategy with neighborhood differential mutation (NDM) is employed to increase the diversity of the algorithm. To verify the efficiency of the proposed algorithm, the CEC2017 and CEC2022 test suites are implemented, and nine classic or state-of-the-art PSO variants are comprehensively tested. The experimental results show that NRLPSO outperforms the popular PSO variants in terms of convergence speed and accuracy. Since NRLPSO utilizes the DE mutations, it is compared with the representative LSHADE variant algorithm - LSHADE_SPACMA. Although LSHADE_SPACMA is better than NRLPSO concerning algorithm stability and convergence accuracy, we will refine our work in the future to enhance the performance in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
紫霄客完成签到,获得积分10
刚刚
1秒前
烟花应助蛙蛙采纳,获得10
1秒前
1秒前
han发布了新的文献求助10
1秒前
郭1994完成签到 ,获得积分10
2秒前
sxb10101应助于文志采纳,获得50
2秒前
2秒前
林深沉发布了新的文献求助10
2秒前
闪闪书桃完成签到,获得积分10
2秒前
3秒前
陈欣发布了新的文献求助10
3秒前
11231发布了新的文献求助10
4秒前
4秒前
Tong完成签到,获得积分10
4秒前
ronll发布了新的文献求助10
4秒前
悦耳白山发布了新的文献求助10
4秒前
dophin发布了新的文献求助10
5秒前
5秒前
xiaoguoxiaoguo完成签到,获得积分10
6秒前
warrior发布了新的文献求助10
6秒前
英姑应助包包琪采纳,获得10
6秒前
6秒前
SR完成签到,获得积分10
7秒前
8秒前
芝士发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
BowieHuang应助独特的高山采纳,获得10
10秒前
BowieHuang应助独特的高山采纳,获得10
10秒前
GZH完成签到,获得积分10
10秒前
yangxiaoya完成签到,获得积分10
11秒前
ronll完成签到,获得积分10
11秒前
马淑贤完成签到 ,获得积分10
12秒前
12秒前
汉堡包应助SLBY采纳,获得10
12秒前
zcm1999发布了新的文献求助10
12秒前
搜集达人应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914