Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy

强化学习 粒子群优化 计算机科学 数学优化 差异进化 突变 趋同(经济学) 早熟收敛 局部最优 操作员(生物学) 最优化问题 人工智能 算法 数学 生物化学 转录因子 经济增长 基因 抑制因子 经济 化学
作者
Wei Li,Peng Liang,Bo Sun,Yafeng Sun,Ying Huang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:78: 101274-101274 被引量:78
标识
DOI:10.1016/j.swevo.2023.101274
摘要

The particle swarm optimization (PSO) algorithm has been one of the most effective methods for solving various engineering optimization problems. Most existing PSO variants frequently use fixed operators, the adoption of a fixed operator learning mode may restrict the intelligence level of each particle, thus reducing the performance of PSO in solving optimization issues with complicated fitness landscapes. To address single goal real-parameter numerical optimization while overcoming the above shortcoming, this paper proposes a reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy (NRLPSO). In NRLPSO, a dynamic oscillation inertial weight (DOW) strategy that provides particles with dynamic adjustment ability in different situations is designed. To resolve the operator selection conundrum of exploration and exploitation, a reinforcement learning-based velocity vector generation (VRL) strategy is developed. At each iteration, particles select the velocity update model based on reinforcement learning, and VRL helps to thoroughly search the problem space. A velocity updating mechanism based on cosine similarity (VCS) is applied to control the velocity learning mode to determine more promising solutions. Furthermore, to alleviate the problem of premature convergence, a local update strategy with neighborhood differential mutation (NDM) is employed to increase the diversity of the algorithm. To verify the efficiency of the proposed algorithm, the CEC2017 and CEC2022 test suites are implemented, and nine classic or state-of-the-art PSO variants are comprehensively tested. The experimental results show that NRLPSO outperforms the popular PSO variants in terms of convergence speed and accuracy. Since NRLPSO utilizes the DE mutations, it is compared with the representative LSHADE variant algorithm - LSHADE_SPACMA. Although LSHADE_SPACMA is better than NRLPSO concerning algorithm stability and convergence accuracy, we will refine our work in the future to enhance the performance in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助鳗鱼文涛采纳,获得30
刚刚
刚刚
刚刚
甜蜜秋白完成签到,获得积分10
1秒前
1秒前
1秒前
恋如雪止应助aaaaaa采纳,获得10
1秒前
浅影完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
爱笑发布了新的文献求助10
2秒前
2秒前
2秒前
qwerqwer完成签到,获得积分10
2秒前
wei_ahpu完成签到,获得积分10
2秒前
晓芳完成签到,获得积分10
3秒前
莫筱铭完成签到,获得积分10
3秒前
LJY完成签到,获得积分10
3秒前
4秒前
CipherSage应助阔达的柠檬采纳,获得10
4秒前
4秒前
5秒前
环境恢复发布了新的文献求助10
5秒前
傲慢葫芦发布了新的文献求助10
5秒前
liang_zai发布了新的文献求助10
5秒前
sghsh完成签到,获得积分10
5秒前
6秒前
6秒前
blablawindy完成签到,获得积分10
6秒前
7秒前
浅影关注了科研通微信公众号
7秒前
球球发布了新的文献求助10
7秒前
tt发布了新的文献求助10
8秒前
Ava应助汉城采纳,获得10
8秒前
Feathamity发布了新的文献求助30
9秒前
sqq发布了新的文献求助10
9秒前
小蘑菇应助bio-tang采纳,获得10
9秒前
xxx7749发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
CodeCraft应助山山采纳,获得30
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751341
求助须知:如何正确求助?哪些是违规求助? 5467831
关于积分的说明 15369436
捐赠科研通 4890425
什么是DOI,文献DOI怎么找? 2629719
邀请新用户注册赠送积分活动 1577966
关于科研通互助平台的介绍 1534134