Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy

强化学习 粒子群优化 计算机科学 数学优化 差异进化 突变 趋同(经济学) 早熟收敛 局部最优 操作员(生物学) 最优化问题 人工智能 算法 数学 抑制因子 转录因子 经济 经济增长 生物化学 化学 基因
作者
Wei Li,Peng Liang,Bo Sun,Yafeng Sun,Ying Huang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:78: 101274-101274 被引量:62
标识
DOI:10.1016/j.swevo.2023.101274
摘要

The particle swarm optimization (PSO) algorithm has been one of the most effective methods for solving various engineering optimization problems. Most existing PSO variants frequently use fixed operators, the adoption of a fixed operator learning mode may restrict the intelligence level of each particle, thus reducing the performance of PSO in solving optimization issues with complicated fitness landscapes. To address single goal real-parameter numerical optimization while overcoming the above shortcoming, this paper proposes a reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy (NRLPSO). In NRLPSO, a dynamic oscillation inertial weight (DOW) strategy that provides particles with dynamic adjustment ability in different situations is designed. To resolve the operator selection conundrum of exploration and exploitation, a reinforcement learning-based velocity vector generation (VRL) strategy is developed. At each iteration, particles select the velocity update model based on reinforcement learning, and VRL helps to thoroughly search the problem space. A velocity updating mechanism based on cosine similarity (VCS) is applied to control the velocity learning mode to determine more promising solutions. Furthermore, to alleviate the problem of premature convergence, a local update strategy with neighborhood differential mutation (NDM) is employed to increase the diversity of the algorithm. To verify the efficiency of the proposed algorithm, the CEC2017 and CEC2022 test suites are implemented, and nine classic or state-of-the-art PSO variants are comprehensively tested. The experimental results show that NRLPSO outperforms the popular PSO variants in terms of convergence speed and accuracy. Since NRLPSO utilizes the DE mutations, it is compared with the representative LSHADE variant algorithm - LSHADE_SPACMA. Although LSHADE_SPACMA is better than NRLPSO concerning algorithm stability and convergence accuracy, we will refine our work in the future to enhance the performance in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzt发布了新的文献求助10
刚刚
allzzwell发布了新的文献求助10
刚刚
1秒前
姚姚完成签到 ,获得积分10
1秒前
2秒前
顾矜应助汎影采纳,获得10
2秒前
小周完成签到,获得积分10
3秒前
Gotyababy发布了新的文献求助10
3秒前
4秒前
酷波er应助黑眼圈采纳,获得10
5秒前
Lyg发布了新的文献求助10
5秒前
爱吃萝卜的Bob完成签到,获得积分10
5秒前
今后应助寻光人采纳,获得10
5秒前
zzt完成签到,获得积分10
7秒前
candy完成签到,获得积分10
8秒前
9秒前
赘婿应助灯盏细辛采纳,获得30
9秒前
zyf发布了新的文献求助10
9秒前
白白完成签到,获得积分10
10秒前
10秒前
Gotyababy完成签到,获得积分10
11秒前
传奇3应助张小杰采纳,获得10
11秒前
刘月光发布了新的文献求助30
11秒前
什么都不会完成签到,获得积分10
11秒前
希望天下0贩的0应助Oracle采纳,获得10
12秒前
852应助浮浮世世采纳,获得30
12秒前
12秒前
沉默飞松完成签到,获得积分10
14秒前
杨胜菲完成签到,获得积分20
14秒前
勺子筷子发布了新的文献求助10
15秒前
Tgb发布了新的文献求助10
15秒前
001完成签到,获得积分10
15秒前
16秒前
ccm应助现实的艳一采纳,获得10
16秒前
16秒前
火鸡味锅巴完成签到 ,获得积分10
16秒前
beaver发布了新的文献求助50
16秒前
zyf完成签到,获得积分10
17秒前
烟花应助一团小煤球采纳,获得10
17秒前
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262