已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy

强化学习 粒子群优化 计算机科学 数学优化 差异进化 突变 趋同(经济学) 早熟收敛 局部最优 操作员(生物学) 最优化问题 人工智能 算法 数学 生物化学 转录因子 经济增长 基因 抑制因子 经济 化学
作者
Wei Li,Peng Liang,Bo Sun,Yafeng Sun,Ying Huang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:78: 101274-101274 被引量:25
标识
DOI:10.1016/j.swevo.2023.101274
摘要

The particle swarm optimization (PSO) algorithm has been one of the most effective methods for solving various engineering optimization problems. Most existing PSO variants frequently use fixed operators, the adoption of a fixed operator learning mode may restrict the intelligence level of each particle, thus reducing the performance of PSO in solving optimization issues with complicated fitness landscapes. To address single goal real-parameter numerical optimization while overcoming the above shortcoming, this paper proposes a reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy (NRLPSO). In NRLPSO, a dynamic oscillation inertial weight (DOW) strategy that provides particles with dynamic adjustment ability in different situations is designed. To resolve the operator selection conundrum of exploration and exploitation, a reinforcement learning-based velocity vector generation (VRL) strategy is developed. At each iteration, particles select the velocity update model based on reinforcement learning, and VRL helps to thoroughly search the problem space. A velocity updating mechanism based on cosine similarity (VCS) is applied to control the velocity learning mode to determine more promising solutions. Furthermore, to alleviate the problem of premature convergence, a local update strategy with neighborhood differential mutation (NDM) is employed to increase the diversity of the algorithm. To verify the efficiency of the proposed algorithm, the CEC2017 and CEC2022 test suites are implemented, and nine classic or state-of-the-art PSO variants are comprehensively tested. The experimental results show that NRLPSO outperforms the popular PSO variants in terms of convergence speed and accuracy. Since NRLPSO utilizes the DE mutations, it is compared with the representative LSHADE variant algorithm - LSHADE_SPACMA. Although LSHADE_SPACMA is better than NRLPSO concerning algorithm stability and convergence accuracy, we will refine our work in the future to enhance the performance in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱珠贝完成签到,获得积分10
刚刚
子陵完成签到 ,获得积分10
1秒前
笨笨志泽完成签到,获得积分10
1秒前
谢芸发布了新的文献求助10
1秒前
万能图书馆应助笨笨志泽采纳,获得10
4秒前
哇呀呀完成签到 ,获得积分10
5秒前
6秒前
7秒前
8秒前
8秒前
9秒前
Tendency完成签到 ,获得积分10
9秒前
11秒前
11秒前
Huang37发布了新的文献求助10
13秒前
梦回唐朝发布了新的文献求助10
13秒前
一剑白完成签到 ,获得积分10
22秒前
单纯的文龙完成签到,获得积分10
22秒前
23秒前
曙光完成签到,获得积分10
23秒前
24秒前
爱上人家四月完成签到,获得积分10
24秒前
阿祖完成签到,获得积分10
26秒前
28秒前
健忘捕完成签到 ,获得积分10
30秒前
笨笨志泽发布了新的文献求助10
30秒前
莫小烦完成签到,获得积分10
34秒前
斯文败类应助罗小罗同学采纳,获得10
37秒前
belssingoo发布了新的文献求助10
37秒前
38秒前
moiumuio完成签到,获得积分10
39秒前
吕半鬼完成签到,获得积分0
39秒前
科目三应助annter采纳,获得30
40秒前
嗯哼应助科研通管家采纳,获得20
40秒前
嗯哼应助科研通管家采纳,获得20
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
44秒前
46秒前
火星完成签到 ,获得积分10
46秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244606
求助须知:如何正确求助?哪些是违规求助? 2888347
关于积分的说明 8252603
捐赠科研通 2556804
什么是DOI,文献DOI怎么找? 1385295
科研通“疑难数据库(出版商)”最低求助积分说明 650094
邀请新用户注册赠送积分活动 626234