亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy

强化学习 粒子群优化 计算机科学 数学优化 差异进化 突变 趋同(经济学) 早熟收敛 局部最优 操作员(生物学) 最优化问题 人工智能 算法 数学 抑制因子 转录因子 经济 经济增长 生物化学 化学 基因
作者
Wei Li,Peng Liang,Bo Sun,Yafeng Sun,Ying Huang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:78: 101274-101274 被引量:62
标识
DOI:10.1016/j.swevo.2023.101274
摘要

The particle swarm optimization (PSO) algorithm has been one of the most effective methods for solving various engineering optimization problems. Most existing PSO variants frequently use fixed operators, the adoption of a fixed operator learning mode may restrict the intelligence level of each particle, thus reducing the performance of PSO in solving optimization issues with complicated fitness landscapes. To address single goal real-parameter numerical optimization while overcoming the above shortcoming, this paper proposes a reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy (NRLPSO). In NRLPSO, a dynamic oscillation inertial weight (DOW) strategy that provides particles with dynamic adjustment ability in different situations is designed. To resolve the operator selection conundrum of exploration and exploitation, a reinforcement learning-based velocity vector generation (VRL) strategy is developed. At each iteration, particles select the velocity update model based on reinforcement learning, and VRL helps to thoroughly search the problem space. A velocity updating mechanism based on cosine similarity (VCS) is applied to control the velocity learning mode to determine more promising solutions. Furthermore, to alleviate the problem of premature convergence, a local update strategy with neighborhood differential mutation (NDM) is employed to increase the diversity of the algorithm. To verify the efficiency of the proposed algorithm, the CEC2017 and CEC2022 test suites are implemented, and nine classic or state-of-the-art PSO variants are comprehensively tested. The experimental results show that NRLPSO outperforms the popular PSO variants in terms of convergence speed and accuracy. Since NRLPSO utilizes the DE mutations, it is compared with the representative LSHADE variant algorithm - LSHADE_SPACMA. Although LSHADE_SPACMA is better than NRLPSO concerning algorithm stability and convergence accuracy, we will refine our work in the future to enhance the performance in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shuo应助科研通管家采纳,获得20
41秒前
Shuo应助科研通管家采纳,获得20
41秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
大模型应助Xinying采纳,获得10
51秒前
Xinying完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
miles完成签到,获得积分10
1分钟前
吃点水果保护局完成签到 ,获得积分10
2分钟前
2分钟前
Shuo应助科研通管家采纳,获得20
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
xin完成签到,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
hhhhhhhhhh完成签到 ,获得积分10
4分钟前
XiaoLiu应助科研通管家采纳,获得20
4分钟前
4分钟前
4分钟前
5分钟前
sc发布了新的文献求助10
5分钟前
5分钟前
文艺易蓉发布了新的文献求助10
5分钟前
共享精神应助sc采纳,获得10
5分钟前
科研通AI5应助文艺易蓉采纳,获得10
5分钟前
寒冷的如之完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
华仔应助科研通管家采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
jackone完成签到,获得积分10
7分钟前
7分钟前
mingjiang发布了新的文献求助10
7分钟前
英俊的铭应助mingjiang采纳,获得10
7分钟前
甜乎贝贝完成签到 ,获得积分10
7分钟前
孙孙应助bxsu采纳,获得10
8分钟前
馆长应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595916
求助须知:如何正确求助?哪些是违规求助? 4008099
关于积分的说明 12408842
捐赠科研通 3686911
什么是DOI,文献DOI怎么找? 2032113
邀请新用户注册赠送积分活动 1065358
科研通“疑难数据库(出版商)”最低求助积分说明 950695