Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy

强化学习 粒子群优化 计算机科学 数学优化 差异进化 突变 趋同(经济学) 早熟收敛 局部最优 操作员(生物学) 最优化问题 人工智能 算法 数学 生物化学 转录因子 经济增长 基因 抑制因子 经济 化学
作者
Wei Li,Peng Liang,Bo Sun,Yafeng Sun,Ying Huang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:78: 101274-101274 被引量:78
标识
DOI:10.1016/j.swevo.2023.101274
摘要

The particle swarm optimization (PSO) algorithm has been one of the most effective methods for solving various engineering optimization problems. Most existing PSO variants frequently use fixed operators, the adoption of a fixed operator learning mode may restrict the intelligence level of each particle, thus reducing the performance of PSO in solving optimization issues with complicated fitness landscapes. To address single goal real-parameter numerical optimization while overcoming the above shortcoming, this paper proposes a reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy (NRLPSO). In NRLPSO, a dynamic oscillation inertial weight (DOW) strategy that provides particles with dynamic adjustment ability in different situations is designed. To resolve the operator selection conundrum of exploration and exploitation, a reinforcement learning-based velocity vector generation (VRL) strategy is developed. At each iteration, particles select the velocity update model based on reinforcement learning, and VRL helps to thoroughly search the problem space. A velocity updating mechanism based on cosine similarity (VCS) is applied to control the velocity learning mode to determine more promising solutions. Furthermore, to alleviate the problem of premature convergence, a local update strategy with neighborhood differential mutation (NDM) is employed to increase the diversity of the algorithm. To verify the efficiency of the proposed algorithm, the CEC2017 and CEC2022 test suites are implemented, and nine classic or state-of-the-art PSO variants are comprehensively tested. The experimental results show that NRLPSO outperforms the popular PSO variants in terms of convergence speed and accuracy. Since NRLPSO utilizes the DE mutations, it is compared with the representative LSHADE variant algorithm - LSHADE_SPACMA. Although LSHADE_SPACMA is better than NRLPSO concerning algorithm stability and convergence accuracy, we will refine our work in the future to enhance the performance in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可恶啊完成签到,获得积分10
刚刚
无极微光应助LLLi采纳,获得20
刚刚
刚刚
lalala发布了新的文献求助20
1秒前
研友_VZG7GZ应助箱子采纳,获得10
1秒前
李健应助抹缇卡采纳,获得30
1秒前
SciGPT应助自觉的溪灵采纳,获得10
2秒前
森水垚发布了新的文献求助10
2秒前
小二郎应助jiyuan采纳,获得10
2秒前
FashionBoy应助rqf采纳,获得10
2秒前
饺子完成签到,获得积分10
2秒前
2秒前
RX信完成签到 ,获得积分10
2秒前
3秒前
太阳发布了新的文献求助10
3秒前
寒松发布了新的文献求助10
4秒前
5秒前
5秒前
小二郎应助自觉紫安采纳,获得10
6秒前
6秒前
6秒前
6秒前
Bowen发布了新的文献求助10
6秒前
迷路的迎蕾完成签到,获得积分10
7秒前
xiao双月完成签到,获得积分10
7秒前
8秒前
10秒前
英姑应助LALA采纳,获得10
10秒前
lameliu发布了新的文献求助10
10秒前
润柏海完成签到 ,获得积分10
11秒前
11秒前
c7发布了新的文献求助10
11秒前
无语的背包完成签到,获得积分10
13秒前
安生发布了新的文献求助10
13秒前
13秒前
CR7应助迷路的迎蕾采纳,获得20
14秒前
47吃不够yu发布了新的文献求助10
14秒前
15秒前
16秒前
FnDs完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589279
求助须知:如何正确求助?哪些是违规求助? 4674065
关于积分的说明 14791491
捐赠科研通 4628070
什么是DOI,文献DOI怎么找? 2532220
邀请新用户注册赠送积分活动 1500838
关于科研通互助平台的介绍 1468437