清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimized levy flight model for heart disease prediction using CNN framework in big data application

计算机科学 最大值和最小值 卷积神经网络 人工智能 大数据 深度学习 机器学习 算法 数据挖掘 数学 数学分析
作者
Arushi Jain,Chandra Sekhara Rao Annavarapu,Praphula Kumar Jain,Yu‐Chen Hu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119859-119859 被引量:27
标识
DOI:10.1016/j.eswa.2023.119859
摘要

Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to treat heart failure and prevent the disease. In most aspects, it was not so successful with the traditional method, which uses past medical history. Many existing models had several types of the loss function in traditional CNN can lead to misidentification of the model. To solve this problem, so many scholars have used the swarm intelligence algorithm, but most of these techniques are stuck in the local minima and suffer from premature convergence. In the proposed method, we build up the Levy Flight – Convolutional Neural Network (LV-CNN) depending on the diagnostic system using heart disease image data set for heart disease assessment. Initially, the input Big Data images are resized to reduce the computational complexity of the system. Then, those resized images are subject to the proposed LV-CNN model. Therefore, the LV approach is integrated with the Sunflower Optimization Algorithm (SFO) to reduce loss function occurring in the CNN architecture. Such a combination helps the SFO algorithm avoid trapping in local minima due to the random walk of the levy flight. The proposed algorithm will be simulated using the MATLAB tool and tested experimentally in terms of accuracy is 95.74%, specificity is 0.96%, the error rate is 0.35, and time consumption is 9.71 s. This comparative analysis revealed that the excellence of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三杯吐然诺完成签到 ,获得积分10
2秒前
科研通AI2S应助小鱼女侠采纳,获得10
3秒前
我独舞完成签到 ,获得积分10
12秒前
13秒前
15秒前
可耐的万言完成签到 ,获得积分10
15秒前
sidashu发布了新的文献求助10
18秒前
小鱼女侠发布了新的文献求助10
19秒前
善学以致用应助摆渡人采纳,获得10
19秒前
Edward发布了新的文献求助10
20秒前
Hello应助胡泳旭采纳,获得10
21秒前
妮妮完成签到 ,获得积分10
23秒前
fuws完成签到 ,获得积分10
24秒前
研友_LmVygn完成签到 ,获得积分10
28秒前
29秒前
Aiden完成签到 ,获得积分10
31秒前
安静的ky完成签到,获得积分10
32秒前
无花果应助sidashu采纳,获得10
40秒前
结实凌瑶完成签到 ,获得积分10
48秒前
1分钟前
gujianhua发布了新的文献求助10
1分钟前
摆渡人发布了新的文献求助10
1分钟前
沐浠完成签到 ,获得积分10
1分钟前
zm完成签到 ,获得积分10
1分钟前
andre20完成签到 ,获得积分10
1分钟前
宇文鹏煊完成签到 ,获得积分10
1分钟前
1分钟前
gujianhua完成签到,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
科研通AI6应助老10采纳,获得10
1分钟前
shadow完成签到,获得积分10
1分钟前
芬芬完成签到 ,获得积分10
1分钟前
自由盼夏完成签到 ,获得积分10
1分钟前
你好你好完成签到 ,获得积分10
1分钟前
Alex-Song完成签到 ,获得积分0
1分钟前
哥哥发布了新的文献求助10
1分钟前
sadh2完成签到 ,获得积分10
1分钟前
摆渡人发布了新的文献求助10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
摆渡人完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551