Regularization Strategy Aided Robust Unsupervised Learning for Wireless Resource Allocation

数学优化 稳健性(进化) 计算机科学 增广拉格朗日法 惩罚法 最优化问题 正规化(语言学) 无线 资源配置 人工智能 数学 计算机网络 生物化学 电信 基因 化学
作者
Haibao Huang,Yun Lin,Guan Gui,Haris Gacanin,Hikmet Sari,Fumiyuki Adachi
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (7): 9647-9652 被引量:1
标识
DOI:10.1109/tvt.2023.3250963
摘要

Unsupervised learning (UL) is widely used in the wireless resource allocation problems due to its lower computational complexity and better performance compared with traditional optimization algorithms. Since wireless resource allocation problems usually have several constraints, primal-dual learning based UL framework are widely adopted. However, the primal-dual learning approach has the problem of oscillation around the constraint threshold while training and there may be serious constraint violations when deployment. In addition, although the output of the neural network can also be restricted to the feasible region by the penalty function method, the optimality of such training methods cannot be guaranteed. In this article, we combine the primal dual learning method with the penalty function method and propose a regularized unsupervised learning (RUL) framework to enhance the robustness of the primal-dual learning based UL framework. In the proposed RUL framework, we use regularization techniques to improve the robustness of primal-dual learning by reducing the risk of constraint violations while training. A quadratic penalty term is introduced into the Lagrangian function of the wireless optimization problem where the constraints can be equivalent to equality constraints to form its augmented Lagrangian function. In the simulation, we give a simple point to point power optimization problem as an example to show that the proposed RUL can improve the robustness of constraint convergence, and can also accelerate training speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助米唐米唐采纳,获得10
2秒前
nhnh880518发布了新的文献求助20
3秒前
橘子林完成签到,获得积分10
4秒前
科研小白完成签到,获得积分10
6秒前
6秒前
标致鹏涛完成签到,获得积分20
8秒前
许自通完成签到,获得积分10
8秒前
9秒前
123444发布了新的文献求助10
9秒前
10秒前
elerain完成签到,获得积分10
10秒前
顺其自然完成签到 ,获得积分10
10秒前
幽默的访冬完成签到,获得积分10
11秒前
王小龙完成签到,获得积分10
12秒前
T_MC郭完成签到,获得积分10
13秒前
zz发布了新的文献求助30
14秒前
零零柒完成签到 ,获得积分10
15秒前
潇洒的血茗完成签到,获得积分10
17秒前
超级的千青完成签到 ,获得积分10
18秒前
小文完成签到,获得积分10
19秒前
大脚仙完成签到,获得积分10
20秒前
羊与布克完成签到,获得积分10
21秒前
changping应助诸星大采纳,获得10
24秒前
桐桐应助北风采纳,获得10
25秒前
热情依白完成签到 ,获得积分10
26秒前
27秒前
scvrl完成签到,获得积分10
27秒前
BatFaith完成签到,获得积分10
28秒前
dfghjkl完成签到,获得积分10
28秒前
大水牛姐姐完成签到,获得积分10
28秒前
Qiancheni完成签到,获得积分10
28秒前
桐桐应助南木采纳,获得10
28秒前
31秒前
科研通AI2S应助ppxx采纳,获得10
31秒前
32秒前
32秒前
北风发布了新的文献求助10
37秒前
dadadaniu完成签到,获得积分10
37秒前
负责紊完成签到,获得积分10
38秒前
remember发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304885
求助须知:如何正确求助?哪些是违规求助? 4451091
关于积分的说明 13850915
捐赠科研通 4338444
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376942
关于科研通互助平台的介绍 1344399