Regularization Strategy Aided Robust Unsupervised Learning for Wireless Resource Allocation

数学优化 稳健性(进化) 计算机科学 增广拉格朗日法 惩罚法 最优化问题 正规化(语言学) 无线 资源配置 人工智能 数学 计算机网络 生物化学 电信 基因 化学
作者
Haibao Huang,Yun Lin,Guan Gui,Haris Gacanin,Hikmet Sari,Fumiyuki Adachi
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (7): 9647-9652 被引量:1
标识
DOI:10.1109/tvt.2023.3250963
摘要

Unsupervised learning (UL) is widely used in the wireless resource allocation problems due to its lower computational complexity and better performance compared with traditional optimization algorithms. Since wireless resource allocation problems usually have several constraints, primal-dual learning based UL framework are widely adopted. However, the primal-dual learning approach has the problem of oscillation around the constraint threshold while training and there may be serious constraint violations when deployment. In addition, although the output of the neural network can also be restricted to the feasible region by the penalty function method, the optimality of such training methods cannot be guaranteed. In this article, we combine the primal dual learning method with the penalty function method and propose a regularized unsupervised learning (RUL) framework to enhance the robustness of the primal-dual learning based UL framework. In the proposed RUL framework, we use regularization techniques to improve the robustness of primal-dual learning by reducing the risk of constraint violations while training. A quadratic penalty term is introduced into the Lagrangian function of the wireless optimization problem where the constraints can be equivalent to equality constraints to form its augmented Lagrangian function. In the simulation, we give a simple point to point power optimization problem as an example to show that the proposed RUL can improve the robustness of constraint convergence, and can also accelerate training speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pzh发布了新的文献求助10
1秒前
1秒前
迟梦琪发布了新的文献求助10
1秒前
艾科研发布了新的文献求助10
2秒前
CCR发布了新的文献求助10
2秒前
科研通AI6应助yanziwu94采纳,获得10
2秒前
2秒前
2秒前
顺心紫翠完成签到,获得积分10
3秒前
3秒前
ding应助Frose采纳,获得10
3秒前
科研通AI5应助西瓜采纳,获得10
3秒前
SciGPT应助Ccc采纳,获得10
4秒前
香蕉觅云应助Saya采纳,获得10
4秒前
昏睡的半莲完成签到,获得积分10
4秒前
英俊的铭应助大宝君采纳,获得20
4秒前
1101592875发布了新的文献求助10
5秒前
欢呼的初彤完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
婷婷完成签到,获得积分10
6秒前
6秒前
JamesPei应助李金文采纳,获得10
7秒前
打打应助平常的纸飞机采纳,获得10
7秒前
体贴代容完成签到,获得积分10
7秒前
CodeCraft应助拉萌采纳,获得10
8秒前
希望天下0贩的0应助ww采纳,获得10
8秒前
ShinEe发布了新的文献求助10
8秒前
慕青应助YRX采纳,获得10
9秒前
希望天下0贩的0应助一二采纳,获得10
9秒前
9秒前
无情依霜完成签到,获得积分10
9秒前
梦中有琦发布了新的文献求助10
9秒前
人沐发布了新的文献求助10
10秒前
10秒前
orixero应助俊逸的小懒猪采纳,获得10
10秒前
11秒前
李爱国应助张磊采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543