Regularization Strategy Aided Robust Unsupervised Learning for Wireless Resource Allocation

数学优化 稳健性(进化) 计算机科学 增广拉格朗日法 惩罚法 最优化问题 正规化(语言学) 无线 资源配置 人工智能 数学 计算机网络 生物化学 电信 基因 化学
作者
Haibao Huang,Yun Lin,Guan Gui,Haris Gacanin,Hikmet Sari,Fumiyuki Adachi
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (7): 9647-9652 被引量:1
标识
DOI:10.1109/tvt.2023.3250963
摘要

Unsupervised learning (UL) is widely used in the wireless resource allocation problems due to its lower computational complexity and better performance compared with traditional optimization algorithms. Since wireless resource allocation problems usually have several constraints, primal-dual learning based UL framework are widely adopted. However, the primal-dual learning approach has the problem of oscillation around the constraint threshold while training and there may be serious constraint violations when deployment. In addition, although the output of the neural network can also be restricted to the feasible region by the penalty function method, the optimality of such training methods cannot be guaranteed. In this article, we combine the primal dual learning method with the penalty function method and propose a regularized unsupervised learning (RUL) framework to enhance the robustness of the primal-dual learning based UL framework. In the proposed RUL framework, we use regularization techniques to improve the robustness of primal-dual learning by reducing the risk of constraint violations while training. A quadratic penalty term is introduced into the Lagrangian function of the wireless optimization problem where the constraints can be equivalent to equality constraints to form its augmented Lagrangian function. In the simulation, we give a simple point to point power optimization problem as an example to show that the proposed RUL can improve the robustness of constraint convergence, and can also accelerate training speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑翠桃发布了新的文献求助10
3秒前
3秒前
马佳音完成签到 ,获得积分10
4秒前
在水一方应助Eon采纳,获得10
4秒前
TB123发布了新的文献求助10
4秒前
6秒前
JHL完成签到 ,获得积分10
6秒前
8秒前
8秒前
黎是叻熠黎完成签到,获得积分10
9秒前
每天必补一科完成签到,获得积分10
9秒前
花生完成签到,获得积分10
10秒前
mufcyang完成签到,获得积分10
10秒前
11秒前
缪缪发布了新的文献求助10
12秒前
12秒前
风清扬发布了新的文献求助10
13秒前
甜美乘云完成签到,获得积分10
14秒前
万能图书馆应助嘿嘿采纳,获得10
14秒前
16秒前
16秒前
xuxin完成签到 ,获得积分10
17秒前
大模型应助温柔柜子采纳,获得10
17秒前
啦啦啦完成签到,获得积分10
17秒前
易点邦发布了新的文献求助10
18秒前
18秒前
yyymmm完成签到,获得积分10
20秒前
Anna完成签到 ,获得积分10
21秒前
22秒前
23秒前
23秒前
23秒前
23秒前
小西完成签到 ,获得积分0
23秒前
科目三应助黄超采纳,获得10
23秒前
24秒前
24秒前
25秒前
情怀应助YANYAN采纳,获得10
26秒前
嘿嘿发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714