Regularization Strategy Aided Robust Unsupervised Learning for Wireless Resource Allocation

数学优化 稳健性(进化) 计算机科学 增广拉格朗日法 惩罚法 最优化问题 正规化(语言学) 无线 资源配置 人工智能 数学 计算机网络 生物化学 电信 基因 化学
作者
Haibao Huang,Yun Lin,Guan Gui,Haris Gacanin,Hikmet Sari,Fumiyuki Adachi
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (7): 9647-9652 被引量:1
标识
DOI:10.1109/tvt.2023.3250963
摘要

Unsupervised learning (UL) is widely used in the wireless resource allocation problems due to its lower computational complexity and better performance compared with traditional optimization algorithms. Since wireless resource allocation problems usually have several constraints, primal-dual learning based UL framework are widely adopted. However, the primal-dual learning approach has the problem of oscillation around the constraint threshold while training and there may be serious constraint violations when deployment. In addition, although the output of the neural network can also be restricted to the feasible region by the penalty function method, the optimality of such training methods cannot be guaranteed. In this article, we combine the primal dual learning method with the penalty function method and propose a regularized unsupervised learning (RUL) framework to enhance the robustness of the primal-dual learning based UL framework. In the proposed RUL framework, we use regularization techniques to improve the robustness of primal-dual learning by reducing the risk of constraint violations while training. A quadratic penalty term is introduced into the Lagrangian function of the wireless optimization problem where the constraints can be equivalent to equality constraints to form its augmented Lagrangian function. In the simulation, we give a simple point to point power optimization problem as an example to show that the proposed RUL can improve the robustness of constraint convergence, and can also accelerate training speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
余晖发布了新的文献求助10
1秒前
清飏应助michael采纳,获得30
1秒前
1秒前
bushi完成签到 ,获得积分10
2秒前
YIWENNN完成签到,获得积分10
3秒前
124cndhaP完成签到,获得积分10
3秒前
陆陆完成签到 ,获得积分10
3秒前
zhangzhibin完成签到 ,获得积分10
4秒前
XXXXX完成签到 ,获得积分10
4秒前
4秒前
栗子完成签到,获得积分10
4秒前
蛋黄酥酥完成签到,获得积分10
5秒前
fanfan完成签到,获得积分10
5秒前
失眠柚子发布了新的文献求助10
6秒前
科研通AI2S应助占易形采纳,获得30
7秒前
7秒前
陈明阳完成签到,获得积分10
7秒前
水果完成签到,获得积分10
7秒前
WSR完成签到 ,获得积分10
8秒前
drfwjuikesv完成签到,获得积分10
8秒前
Quency完成签到 ,获得积分10
9秒前
Davidjun完成签到,获得积分10
9秒前
刘艺娜完成签到,获得积分10
10秒前
开心的火龙果完成签到,获得积分10
11秒前
aa394805712完成签到 ,获得积分10
11秒前
11秒前
11秒前
852应助1111采纳,获得10
12秒前
泡泡茶壶完成签到,获得积分10
12秒前
有魅力的觅双完成签到,获得积分10
12秒前
简单不言完成签到,获得积分10
12秒前
大胆问枫完成签到,获得积分10
13秒前
挽忆逍遥完成签到 ,获得积分10
14秒前
一木完成签到,获得积分10
14秒前
guan完成签到,获得积分10
14秒前
行者发布了新的文献求助10
15秒前
波奇塔发布了新的文献求助10
15秒前
司空绝山完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451