Regularization Strategy Aided Robust Unsupervised Learning for Wireless Resource Allocation

数学优化 稳健性(进化) 计算机科学 增广拉格朗日法 惩罚法 最优化问题 正规化(语言学) 无线 资源配置 人工智能 数学 计算机网络 生物化学 电信 基因 化学
作者
Haibao Huang,Yun Lin,Guan Gui,Haris Gacanin,Hikmet Sari,Fumiyuki Adachi
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (7): 9647-9652 被引量:1
标识
DOI:10.1109/tvt.2023.3250963
摘要

Unsupervised learning (UL) is widely used in the wireless resource allocation problems due to its lower computational complexity and better performance compared with traditional optimization algorithms. Since wireless resource allocation problems usually have several constraints, primal-dual learning based UL framework are widely adopted. However, the primal-dual learning approach has the problem of oscillation around the constraint threshold while training and there may be serious constraint violations when deployment. In addition, although the output of the neural network can also be restricted to the feasible region by the penalty function method, the optimality of such training methods cannot be guaranteed. In this article, we combine the primal dual learning method with the penalty function method and propose a regularized unsupervised learning (RUL) framework to enhance the robustness of the primal-dual learning based UL framework. In the proposed RUL framework, we use regularization techniques to improve the robustness of primal-dual learning by reducing the risk of constraint violations while training. A quadratic penalty term is introduced into the Lagrangian function of the wireless optimization problem where the constraints can be equivalent to equality constraints to form its augmented Lagrangian function. In the simulation, we give a simple point to point power optimization problem as an example to show that the proposed RUL can improve the robustness of constraint convergence, and can also accelerate training speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15256397832发布了新的文献求助10
刚刚
小不溜发布了新的文献求助10
刚刚
所所应助Muran采纳,获得10
1秒前
whandzxl发布了新的文献求助10
1秒前
1秒前
wanci应助漂亮幻莲采纳,获得10
1秒前
ysynqqr完成签到,获得积分10
1秒前
heart发布了新的文献求助10
2秒前
2秒前
3秒前
王雨晴完成签到,获得积分10
3秒前
577完成签到,获得积分10
4秒前
田様应助yy122采纳,获得10
5秒前
黑山老妖发布了新的文献求助10
6秒前
7秒前
7秒前
徐徐发布了新的文献求助10
7秒前
小洪俊熙完成签到,获得积分10
7秒前
芦泸完成签到,获得积分10
8秒前
bifeifei完成签到,获得积分10
8秒前
qqqq发布了新的文献求助10
8秒前
8秒前
heart完成签到,获得积分10
8秒前
hug完成签到,获得积分0
9秒前
CodeCraft应助黑山老妖采纳,获得10
9秒前
清秀灵薇完成签到,获得积分10
9秒前
10秒前
10秒前
chemist229完成签到,获得积分10
10秒前
情怀应助唐军采纳,获得10
11秒前
充电宝应助李妹妹啦采纳,获得10
11秒前
梦想Nature的一天完成签到,获得积分10
12秒前
12秒前
飞飞发布了新的文献求助30
12秒前
jqxxx完成签到,获得积分10
12秒前
芦泸发布了新的文献求助10
12秒前
577发布了新的文献求助10
14秒前
ccc发布了新的文献求助10
14秒前
冷静水蓝发布了新的文献求助10
14秒前
3s发布了新的文献求助10
14秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206078
求助须知:如何正确求助?哪些是违规求助? 2855402
关于积分的说明 8099348
捐赠科研通 2520496
什么是DOI,文献DOI怎么找? 1353397
科研通“疑难数据库(出版商)”最低求助积分说明 641741
邀请新用户注册赠送积分活动 612821