Transformers in medical image segmentation: A review

计算机科学 图像分割 分割 变压器 人工智能 计算机视觉 编码器 配电变压器 电气工程 操作系统 工程类 电压
作者
Hanguang Xiao,Li Li,Qiyuan Liu,Xiuhong Zhu,Qihang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104791-104791 被引量:100
标识
DOI:10.1016/j.bspc.2023.104791
摘要

Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vision fields such as vision transformer (ViT) and Swin transformer. In the last year, moreover, many scholars have applied transformer to medical image segmentation and have achieved good segmentation results. Transformer-based medical image segmentation has become one of the hot spots in this field. The purpose of this work is to categorize and review the segmentation methods of Unet-based transformer and other model based transformer in medical images. This paper summarizes the transformer-based segmentation models in the abdominal organs, heart, brain, and lung based on the relevant studies in the last two years. We described and analyzed the model structure including the position of the transformer in the model, the changes made by scholars to transformer and the combination with the model. In this work, the segmentation performance results based on Dice evaluation metrics are compared. Through the help of 93 references, we find that researchers prefer to use Unet-based transformer models than others and place the transformer structure in the encoder. These new models improve the segmentation performance compared with U-Net and other segmentation models. However, there are not many related studies on lungs, which points to a new way for future research. We found that the combination of U-Net and transformer is more suitable for segmentation. In future research on medical image segmentation, researchers can use a suitable transformer-based segmentation method or modify the transformer structure according to the segmentation requirements. We hope that this work will be helpful for improvements of the transformer to solve clinical problems in medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱学习的小趴菜完成签到,获得积分10
1秒前
不配.应助想人陪的从波采纳,获得10
2秒前
Yvette发布了新的文献求助10
2秒前
gy发布了新的文献求助10
3秒前
华仔应助穿堂风采纳,获得10
3秒前
王紫绯发布了新的文献求助10
3秒前
youayou发布了新的文献求助10
4秒前
5秒前
就叫希望吧完成签到 ,获得积分10
7秒前
11秒前
11秒前
11秒前
xianxian关注了科研通微信公众号
12秒前
鲨猫收藏家完成签到 ,获得积分10
12秒前
情怀应助李哥采纳,获得10
12秒前
唐难破完成签到,获得积分10
14秒前
15秒前
16秒前
迷路尔曼发布了新的文献求助10
16秒前
16秒前
天南发布了新的文献求助10
16秒前
科研通AI2S应助gy采纳,获得10
18秒前
18秒前
李爱国应助111采纳,获得10
18秒前
Novajet发布了新的文献求助10
20秒前
snow完成签到 ,获得积分10
21秒前
23秒前
wangruize发布了新的文献求助10
23秒前
传奇3应助zhyi采纳,获得10
24秒前
28秒前
28秒前
wwwwww发布了新的文献求助10
30秒前
CipherSage应助得鹿梦鱼采纳,获得10
30秒前
TwenYao发布了新的文献求助10
31秒前
Jana完成签到,获得积分10
31秒前
111发布了新的文献求助10
33秒前
wwwwww完成签到,获得积分10
37秒前
37秒前
柔弱友卉应助haikuotian采纳,获得20
37秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102