Transformers in medical image segmentation: A review

计算机科学 图像分割 分割 变压器 人工智能 计算机视觉 编码器 配电变压器 电气工程 操作系统 工程类 电压
作者
Hanguang Xiao,Li Li,Qiyuan Liu,Xiuhong Zhu,Qihang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104791-104791 被引量:164
标识
DOI:10.1016/j.bspc.2023.104791
摘要

Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vision fields such as vision transformer (ViT) and Swin transformer. In the last year, moreover, many scholars have applied transformer to medical image segmentation and have achieved good segmentation results. Transformer-based medical image segmentation has become one of the hot spots in this field. The purpose of this work is to categorize and review the segmentation methods of Unet-based transformer and other model based transformer in medical images. This paper summarizes the transformer-based segmentation models in the abdominal organs, heart, brain, and lung based on the relevant studies in the last two years. We described and analyzed the model structure including the position of the transformer in the model, the changes made by scholars to transformer and the combination with the model. In this work, the segmentation performance results based on Dice evaluation metrics are compared. Through the help of 93 references, we find that researchers prefer to use Unet-based transformer models than others and place the transformer structure in the encoder. These new models improve the segmentation performance compared with U-Net and other segmentation models. However, there are not many related studies on lungs, which points to a new way for future research. We found that the combination of U-Net and transformer is more suitable for segmentation. In future research on medical image segmentation, researchers can use a suitable transformer-based segmentation method or modify the transformer structure according to the segmentation requirements. We hope that this work will be helpful for improvements of the transformer to solve clinical problems in medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助清漪采纳,获得10
刚刚
leslieo3o完成签到,获得积分10
1秒前
1秒前
1秒前
ddd完成签到,获得积分10
1秒前
1秒前
2秒前
啦啦咔嘞发布了新的文献求助10
2秒前
蛋挞完成签到,获得积分10
2秒前
星辰大海应助jjj采纳,获得10
3秒前
3秒前
Advance.Cheng完成签到,获得积分10
3秒前
学术垃圾完成签到,获得积分10
4秒前
4秒前
yar应助生动的初柳采纳,获得10
4秒前
源源元发布了新的文献求助10
4秒前
5秒前
黎笙完成签到,获得积分10
5秒前
壮观的擎发布了新的文献求助10
5秒前
6秒前
杨大泡泡完成签到 ,获得积分10
6秒前
drywell发布了新的文献求助10
6秒前
所所应助许十五采纳,获得10
6秒前
MnO2fff完成签到,获得积分10
6秒前
LEMONS应助袁小圆采纳,获得10
7秒前
芋头cc完成签到,获得积分10
7秒前
7秒前
ycx完成签到,获得积分20
7秒前
8秒前
西灵壹发布了新的文献求助10
8秒前
机灵冬灵发布了新的文献求助10
8秒前
勤劳的小牛蛙应助hdbys采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
Annora完成签到,获得积分10
9秒前
老默完成签到,获得积分10
9秒前
10秒前
zero完成签到 ,获得积分10
10秒前
夜雨声烦完成签到,获得积分20
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785