Joint spatial and scale attention network for multi-view facial expression recognition

判别式 计算机科学 人工智能 模式识别(心理学) 规范化(社会学) 估计员 姿势 表达式(计算机科学) 面部表情 不变(物理) 机器学习 数学 社会学 人类学 数学物理 程序设计语言 统计
作者
Yuanyuan Liu,Jiyao Peng,Wei Dai,Jiabei Zeng,Shiguang Shan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:139: 109496-109496 被引量:6
标识
DOI:10.1016/j.patcog.2023.109496
摘要

Multi-view facial expression recognition (FER) is a challenging task because the appearance of an expression varies greatly due to poses. To alleviate the influences of poses, recently developed methods perform pose normalization, learn pose-invariant features, or learn pose-specific FER classifiers. However, these methods usually rely on a prerequisite pose estimator or expressive region detector that is independent of the subsequent expression analysis. Different from existing methods, we propose a joint spatial and scale attention network (SSA-Net) to localize proper regions for simultaneous head pose estimation (HPE) and FER. Specifically, SSA-Net discovers the regions most relevant to the facial expression at hierarchical scales by a spatial attention mechanism, and the most informative scales are selected in a scale attention learning manner to learn the joint pose-invariant and expression-discriminative representations. Then, we employ a dynamically constrained multi-task learning mechanism with a delicately designed constrain regulation to properly and adaptively train the network to optimize the representations, thus achieving accurate multi-view FER. The effectiveness of the proposed SSA-Net is validated on three multi-view datasets (BU-3DFE, Multi-PIE, and KDEF) and three in-the-wild FER datasets (AffectNet, SFEW, and FER2013). Extensive experiments demonstrate that the proposed framework outperforms existing state-of-the-art methods under both within-dataset and cross-dataset settings, with relative accuracy gains of 2.36%, 1.33%, 3.11%, 2.84%, 15.7%, and 7.57%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leon应助科研通管家采纳,获得20
刚刚
无花果应助科研通管家采纳,获得10
刚刚
cc应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得30
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
mk发布了新的文献求助10
刚刚
李健应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
Leon应助科研通管家采纳,获得10
1秒前
小杨同学应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Margaret完成签到 ,获得积分10
2秒前
汪珊珊完成签到 ,获得积分10
2秒前
3秒前
4秒前
LIUJC完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
青蛙旅行完成签到 ,获得积分10
5秒前
wanyou28完成签到 ,获得积分10
6秒前
cclin完成签到,获得积分10
6秒前
领导范儿应助按时下班采纳,获得10
6秒前
7秒前
科研通AI5应助ning采纳,获得10
8秒前
8秒前
Ripples完成签到 ,获得积分10
9秒前
9秒前
Grayball应助小向采纳,获得10
9秒前
leeteukxx完成签到,获得积分10
9秒前
JMH发布了新的文献求助10
9秒前
alex完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
曹曹发布了新的文献求助10
13秒前
LiAlan完成签到 ,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771