Weakly supervised multi-class semantic video segmentation for road scenes

计算机科学 分割 人工智能 计算机视觉 像素 特征(语言学) 班级(哲学) 对象(语法) 钥匙(锁) 计算 模式识别(心理学) 图像分割 算法 计算机安全 语言学 哲学
作者
Mehwish Awan,Jitae Shin
出处
期刊:Computer Vision and Image Understanding [Elsevier]
卷期号:230: 103664-103664 被引量:3
标识
DOI:10.1016/j.cviu.2023.103664
摘要

Weakly supervised multi-class video segmentation is one of the most challenging yet least studied research problems in computer vision. This study aims to investigate two main items: (1) effective feature update for temporal changes combined with feature reuse between temporal frames; and (2) learn object patterns in complex scenes specifically for videos under weak supervision. Associating image tags to visual appearance is not a straightforward learning task, especially for complex scenes. Therefore, in this paper, we present manifold augmentations to obtain reliable pixel labels from image tags. We propose a framework comprised of two key modules: a temporal split module for efficient video processing and a pseudo per-pixel seed generation module for precise pixel-level supervision. Particularly, in our model, we utilize and explore temporal correlations via temporal split module and temporal attention. To reuse the extracted features and incorporate temporal updates for precise and fast computation, a channel-wise temporal split mechanism between successive video frames is presented. Furthermore, we evaluated proposed modules in two additional settings: (1) fully or sparsely supervised road scene video segmentation; and (2) weakly supervised segmentation for complex road scene images. Experiments are conducted on the Cityscapes and CamVid datasets, using DeepLabv3 as segmentation network and LiteFlowNet to compute motion vectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助ererrrr采纳,获得10
刚刚
刚刚
刚刚
苏利完成签到,获得积分10
刚刚
听曲散步完成签到,获得积分10
刚刚
电四拟发布了新的文献求助10
刚刚
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
WTT发布了新的文献求助10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
小远远应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
小远远应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
AamirAli发布了新的文献求助30
2秒前
2秒前
bkagyin应助偏偏采纳,获得10
2秒前
2秒前
2秒前
搜集达人应助Tracy采纳,获得10
2秒前
2秒前
2秒前
Lune发布了新的文献求助10
2秒前
2秒前
45度人发布了新的文献求助10
3秒前
善学以致用应助简单幸福采纳,获得10
3秒前
沚沐完成签到,获得积分20
3秒前
清秀的悒完成签到,获得积分10
3秒前
4秒前
cloud发布了新的文献求助20
4秒前
丘比特应助路之云采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435431
求助须知:如何正确求助?哪些是违规求助? 4547484
关于积分的说明 14208774
捐赠科研通 4467686
什么是DOI,文献DOI怎么找? 2448690
邀请新用户注册赠送积分活动 1439596
关于科研通互助平台的介绍 1416204