QE-DAL: A quantum image feature extraction with dense distribution-aware learning framework for object counting and localization

计算机科学 卷积神经网络 人工智能 跳跃式监视 特征提取 模式识别(心理学) 像素 高斯分布 算法 量子力学 物理
作者
Ruihan Hu,Zhi-Ri Tang,Rui Yang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:138: 110149-110149
标识
DOI:10.1016/j.asoc.2023.110149
摘要

Object counting and localization (OCL) was an essential problem in intelligent transportation fields. The convolutional neural network (CNN)-based models transformed the OCL problems into a regression task. However, the abundant semantic information of the crowd scenes may lead the CNN framework hard to extract adequate features in order to ensure good precision In this work, a Quantum Image Feature Extraction with Dense Distribution-Aware Learning (QE-DAL) framework was proposed to handle this problem. The crowd features were extracted by Quantum layers, which were extracted by encoding, quantum circuits and decode procedures based on the multi-scale architecture. For handling objects, the refined distance compensating operator was adopted to fuse the multi-scale architecture. To relieve the computation burden, a Gaussian distribution estimation mechanism was proposed to initiate and update the bounding sizes of the objects via a point-supervised manner. Finally, the joint loss function, which describes pixel classes, density maps and offset bounding boxes, was built for QE-DAL. The ablation experiment results demonstrated that the effectiveness of the quantum feature extraction architecture and the Gaussian distribution estimation mechanism of QE-DAL was validated to show superior performance than the other state-of-the-art framework. Moreover, the generalization of the QE-DAL was evidenced by the Cross-scene learning evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simone发布了新的文献求助10
1秒前
vivelejrlee完成签到,获得积分10
1秒前
1秒前
2秒前
666发布了新的文献求助10
2秒前
Sunshine完成签到,获得积分10
2秒前
4秒前
4秒前
raulben完成签到,获得积分10
5秒前
5秒前
5秒前
洁净的嘉熙完成签到,获得积分10
5秒前
周星星发布了新的文献求助10
6秒前
suolong完成签到,获得积分10
7秒前
华仔应助啦啦啦啦采纳,获得10
7秒前
Green完成签到,获得积分10
7秒前
慕青应助忧郁的猕猴桃采纳,获得10
7秒前
SciGPT应助忧郁的猕猴桃采纳,获得10
7秒前
充电宝应助忧郁的猕猴桃采纳,获得10
7秒前
hhh发布了新的文献求助10
7秒前
8秒前
sigmund发布了新的文献求助10
8秒前
今天进步了吗完成签到,获得积分10
8秒前
Yleo完成签到,获得积分20
8秒前
情怀应助lyx采纳,获得10
9秒前
CodeCraft应助nice采纳,获得10
9秒前
10秒前
日日发布了新的文献求助20
10秒前
翠翠完成签到,获得积分10
10秒前
11秒前
派大星的海洋裤完成签到,获得积分10
11秒前
蟹小星完成签到 ,获得积分10
11秒前
11秒前
健壮的花瓣完成签到 ,获得积分10
11秒前
祖丽阿娅发布了新的文献求助10
11秒前
Hui_2023发布了新的文献求助10
12秒前
12秒前
周星星完成签到,获得积分10
13秒前
Betty发布了新的文献求助20
13秒前
Cynthia完成签到,获得积分10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3235033
求助须知:如何正确求助?哪些是违规求助? 2881221
关于积分的说明 8219926
捐赠科研通 2548967
什么是DOI,文献DOI怎么找? 1378095
科研通“疑难数据库(出版商)”最低求助积分说明 648121
邀请新用户注册赠送积分活动 623590