QE-DAL: A quantum image feature extraction with dense distribution-aware learning framework for object counting and localization

计算机科学 卷积神经网络 人工智能 跳跃式监视 特征提取 模式识别(心理学) 像素 高斯分布 算法 量子力学 物理
作者
Ruihan Hu,Zhi-Ri Tang,Rui Yang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:138: 110149-110149
标识
DOI:10.1016/j.asoc.2023.110149
摘要

Object counting and localization (OCL) was an essential problem in intelligent transportation fields. The convolutional neural network (CNN)-based models transformed the OCL problems into a regression task. However, the abundant semantic information of the crowd scenes may lead the CNN framework hard to extract adequate features in order to ensure good precision In this work, a Quantum Image Feature Extraction with Dense Distribution-Aware Learning (QE-DAL) framework was proposed to handle this problem. The crowd features were extracted by Quantum layers, which were extracted by encoding, quantum circuits and decode procedures based on the multi-scale architecture. For handling objects, the refined distance compensating operator was adopted to fuse the multi-scale architecture. To relieve the computation burden, a Gaussian distribution estimation mechanism was proposed to initiate and update the bounding sizes of the objects via a point-supervised manner. Finally, the joint loss function, which describes pixel classes, density maps and offset bounding boxes, was built for QE-DAL. The ablation experiment results demonstrated that the effectiveness of the quantum feature extraction architecture and the Gaussian distribution estimation mechanism of QE-DAL was validated to show superior performance than the other state-of-the-art framework. Moreover, the generalization of the QE-DAL was evidenced by the Cross-scene learning evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽莛关注了科研通微信公众号
1秒前
Asahi完成签到 ,获得积分10
2秒前
2秒前
研友_Lmg1gZ完成签到,获得积分0
3秒前
852应助乌江上次采纳,获得10
3秒前
绚丽多彩的灰完成签到,获得积分10
5秒前
jiwn完成签到,获得积分10
6秒前
折光应助哈哈哈采纳,获得30
10秒前
瓜地学龙叫关注了科研通微信公众号
11秒前
SIRT1完成签到,获得积分10
11秒前
17秒前
18秒前
20秒前
神奇宝贝完成签到,获得积分10
20秒前
JC完成签到,获得积分10
21秒前
21秒前
niche9964发布了新的文献求助10
23秒前
世纪飞虎发布了新的文献求助10
24秒前
wzxhhh完成签到,获得积分10
24秒前
桐桐应助白色的猫猫采纳,获得10
25秒前
heshiqi发布了新的文献求助10
26秒前
端茶倒水完成签到,获得积分10
26秒前
乌江上次发布了新的文献求助10
27秒前
x1完成签到,获得积分10
28秒前
共享精神应助星期八采纳,获得10
28秒前
29秒前
gffh完成签到,获得积分10
30秒前
tuanhust应助aiid采纳,获得10
31秒前
niche9964完成签到,获得积分10
31秒前
xiaoz完成签到,获得积分10
33秒前
QiQi发布了新的文献求助10
33秒前
世纪飞虎完成签到,获得积分20
34秒前
35秒前
Zhen Wang完成签到,获得积分20
38秒前
40秒前
41秒前
XU发布了新的文献求助10
41秒前
41秒前
潇湘雪月完成签到,获得积分10
44秒前
兴奋平松完成签到 ,获得积分10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003