QE-DAL: A quantum image feature extraction with dense distribution-aware learning framework for object counting and localization

计算机科学 卷积神经网络 人工智能 跳跃式监视 特征提取 模式识别(心理学) 像素 高斯分布 算法 量子力学 物理
作者
Ruihan Hu,Zhi-Ri Tang,Rui Yang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:138: 110149-110149
标识
DOI:10.1016/j.asoc.2023.110149
摘要

Object counting and localization (OCL) was an essential problem in intelligent transportation fields. The convolutional neural network (CNN)-based models transformed the OCL problems into a regression task. However, the abundant semantic information of the crowd scenes may lead the CNN framework hard to extract adequate features in order to ensure good precision In this work, a Quantum Image Feature Extraction with Dense Distribution-Aware Learning (QE-DAL) framework was proposed to handle this problem. The crowd features were extracted by Quantum layers, which were extracted by encoding, quantum circuits and decode procedures based on the multi-scale architecture. For handling objects, the refined distance compensating operator was adopted to fuse the multi-scale architecture. To relieve the computation burden, a Gaussian distribution estimation mechanism was proposed to initiate and update the bounding sizes of the objects via a point-supervised manner. Finally, the joint loss function, which describes pixel classes, density maps and offset bounding boxes, was built for QE-DAL. The ablation experiment results demonstrated that the effectiveness of the quantum feature extraction architecture and the Gaussian distribution estimation mechanism of QE-DAL was validated to show superior performance than the other state-of-the-art framework. Moreover, the generalization of the QE-DAL was evidenced by the Cross-scene learning evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
fatal完成签到,获得积分10
3秒前
过分动真发布了新的文献求助20
3秒前
高贵的夜南完成签到,获得积分10
3秒前
火星上的菲鹰给冰激凌UP的求助进行了留言
3秒前
4秒前
尺素寸心发布了新的文献求助10
5秒前
orixero应助BOSLobster采纳,获得10
6秒前
orixero应助yatou5651采纳,获得10
7秒前
在水一方应助卡卡采纳,获得10
7秒前
追寻羿完成签到 ,获得积分10
8秒前
hhzz发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
11秒前
科研通AI2S应助好玩和有趣采纳,获得10
11秒前
美丽跳跳糖完成签到,获得积分20
11秒前
11秒前
丘比特应助llll采纳,获得10
12秒前
12秒前
迟大猫应助su采纳,获得10
12秒前
发嗲的戎完成签到 ,获得积分10
13秒前
13秒前
内向凌兰完成签到,获得积分10
13秒前
13秒前
zhappy完成签到,获得积分10
14秒前
satchzhao发布了新的文献求助10
14秒前
友好的妍完成签到 ,获得积分10
15秒前
香山叶正红完成签到 ,获得积分10
16秒前
TOM发布了新的文献求助10
16秒前
沙耶酱完成签到,获得积分10
16秒前
赢赢发布了新的文献求助10
17秒前
18秒前
尺素寸心完成签到,获得积分10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808