QE-DAL: A quantum image feature extraction with dense distribution-aware learning framework for object counting and localization

计算机科学 卷积神经网络 人工智能 跳跃式监视 特征提取 模式识别(心理学) 像素 高斯分布 算法 量子力学 物理
作者
Ruihan Hu,Zhi-Ri Tang,Rui Yang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:138: 110149-110149
标识
DOI:10.1016/j.asoc.2023.110149
摘要

Object counting and localization (OCL) was an essential problem in intelligent transportation fields. The convolutional neural network (CNN)-based models transformed the OCL problems into a regression task. However, the abundant semantic information of the crowd scenes may lead the CNN framework hard to extract adequate features in order to ensure good precision In this work, a Quantum Image Feature Extraction with Dense Distribution-Aware Learning (QE-DAL) framework was proposed to handle this problem. The crowd features were extracted by Quantum layers, which were extracted by encoding, quantum circuits and decode procedures based on the multi-scale architecture. For handling objects, the refined distance compensating operator was adopted to fuse the multi-scale architecture. To relieve the computation burden, a Gaussian distribution estimation mechanism was proposed to initiate and update the bounding sizes of the objects via a point-supervised manner. Finally, the joint loss function, which describes pixel classes, density maps and offset bounding boxes, was built for QE-DAL. The ablation experiment results demonstrated that the effectiveness of the quantum feature extraction architecture and the Gaussian distribution estimation mechanism of QE-DAL was validated to show superior performance than the other state-of-the-art framework. Moreover, the generalization of the QE-DAL was evidenced by the Cross-scene learning evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq596发布了新的文献求助30
1秒前
2秒前
lin完成签到,获得积分10
2秒前
2秒前
雪白元风完成签到 ,获得积分10
3秒前
3秒前
方hh发布了新的文献求助10
4秒前
4秒前
liuyepiao完成签到,获得积分10
4秒前
带头大哥应助lily采纳,获得200
4秒前
SMZ发布了新的文献求助10
4秒前
WilliamJarvis完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
小杭776发布了新的文献求助10
5秒前
6秒前
Akim应助羊羊羊采纳,获得10
6秒前
6秒前
小月亮发布了新的文献求助200
6秒前
7秒前
7秒前
8秒前
9秒前
随意发布了新的文献求助10
9秒前
鲤鱼笑容完成签到,获得积分10
9秒前
PG发布了新的文献求助10
10秒前
Jiali完成签到,获得积分10
10秒前
华仔应助猫小咪采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
yh发布了新的文献求助10
10秒前
10秒前
共渡完成签到,获得积分10
11秒前
今后应助合适觅荷采纳,获得10
11秒前
11秒前
李迅迅发布了新的文献求助10
12秒前
朱桂林完成签到,获得积分10
12秒前
Lyue发布了新的文献求助10
12秒前
orixero应助机智的然然采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774528
求助须知:如何正确求助?哪些是违规求助? 5618245
关于积分的说明 15436081
捐赠科研通 4907003
什么是DOI,文献DOI怎么找? 2640503
邀请新用户注册赠送积分活动 1588336
关于科研通互助平台的介绍 1543291