QE-DAL: A quantum image feature extraction with dense distribution-aware learning framework for object counting and localization

计算机科学 卷积神经网络 人工智能 跳跃式监视 特征提取 模式识别(心理学) 像素 高斯分布 算法 量子力学 物理
作者
Ruihan Hu,Zhi-Ri Tang,Rui Yang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:138: 110149-110149
标识
DOI:10.1016/j.asoc.2023.110149
摘要

Object counting and localization (OCL) was an essential problem in intelligent transportation fields. The convolutional neural network (CNN)-based models transformed the OCL problems into a regression task. However, the abundant semantic information of the crowd scenes may lead the CNN framework hard to extract adequate features in order to ensure good precision In this work, a Quantum Image Feature Extraction with Dense Distribution-Aware Learning (QE-DAL) framework was proposed to handle this problem. The crowd features were extracted by Quantum layers, which were extracted by encoding, quantum circuits and decode procedures based on the multi-scale architecture. For handling objects, the refined distance compensating operator was adopted to fuse the multi-scale architecture. To relieve the computation burden, a Gaussian distribution estimation mechanism was proposed to initiate and update the bounding sizes of the objects via a point-supervised manner. Finally, the joint loss function, which describes pixel classes, density maps and offset bounding boxes, was built for QE-DAL. The ablation experiment results demonstrated that the effectiveness of the quantum feature extraction architecture and the Gaussian distribution estimation mechanism of QE-DAL was validated to show superior performance than the other state-of-the-art framework. Moreover, the generalization of the QE-DAL was evidenced by the Cross-scene learning evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲菲儿发布了新的文献求助20
刚刚
1秒前
不倦应助wuran采纳,获得10
1秒前
在水一方应助丽丽采纳,获得10
1秒前
1秒前
元谷雪发布了新的文献求助10
1秒前
Mayday完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
华仔应助HJJHJH采纳,获得10
2秒前
王宇航发布了新的文献求助10
3秒前
勤劳白翠发布了新的文献求助10
3秒前
hh完成签到,获得积分10
3秒前
陈cxz发布了新的文献求助10
3秒前
3秒前
vv完成签到,获得积分10
4秒前
和风晓月完成签到,获得积分10
4秒前
林冲发布了新的文献求助10
4秒前
Gaoge完成签到,获得积分10
5秒前
ks_Mo发布了新的文献求助10
5秒前
哈哈哈啊完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
甜蜜凡波完成签到,获得积分10
6秒前
舒服的灰狼完成签到,获得积分10
6秒前
王金金发布了新的文献求助10
7秒前
月月发布了新的文献求助10
7秒前
7秒前
ABCDE完成签到,获得积分10
7秒前
曲意风华完成签到,获得积分10
7秒前
8秒前
8秒前
卢健辉完成签到,获得积分10
8秒前
GH发布了新的文献求助10
8秒前
xwwdcg完成签到,获得积分10
9秒前
9秒前
wang发布了新的文献求助10
10秒前
Guochunbao发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284