Expanding the prediction capacity in long sequence time-series forecasting

序列(生物学) 变压器 计算机科学 编码器 推论 人工智能 依赖关系(UML) 系列(地层学) 算法 工程类 电压 遗传学 生物 电气工程 操作系统 古生物学
作者
Haoyi Zhou,Jianxin Li,Li Du,Shuai Zhang,Mengyi Yan,Hui Xiong
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:318: 103886-103886 被引量:16
标识
DOI:10.1016/j.artint.2023.103886
摘要

Many real-world applications show growing demand for the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) requires a higher prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to accommodate the capacity requirements. However, three real challenges that may have prevented expanding the prediction capacity in LSTF are that the Transformer is limited by quadratic time complexity, high memory usage, and slow inference speed under the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics. (i) a ProbSparse self-attention mechanism, which achieves O(Llog⁡L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling promotes dominating attention by convolutional operators. Besides, the halving of layer width is intended to reduce the expense of building a deeper network on extremely long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on ten large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喵喵完成签到 ,获得积分10
1秒前
ding应助和谐的寄凡采纳,获得10
2秒前
哎哟很烦发布了新的文献求助10
3秒前
天天快乐应助大成子采纳,获得10
3秒前
坚定自信完成签到,获得积分10
3秒前
one完成签到 ,获得积分10
3秒前
高兴冬灵发布了新的文献求助10
4秒前
wwww完成签到,获得积分10
6秒前
7秒前
搜集达人应助qianqian采纳,获得10
7秒前
10秒前
cyw完成签到,获得积分10
10秒前
qhy123完成签到,获得积分10
10秒前
11秒前
JamesPei应助欢呼善斓采纳,获得10
13秒前
初心完成签到,获得积分10
13秒前
2428完成签到,获得积分10
13秒前
13秒前
王哪跑12发布了新的文献求助10
14秒前
zhengyuci完成签到 ,获得积分10
15秒前
和谐的迎天完成签到,获得积分10
17秒前
长安乱世完成签到 ,获得积分10
17秒前
东晓完成签到,获得积分10
18秒前
胡楠完成签到,获得积分10
18秒前
老肖应助云泰悟采纳,获得20
20秒前
22秒前
23秒前
无语的如音完成签到,获得积分10
23秒前
子车茗应助谨慕轩采纳,获得10
24秒前
25秒前
hxl完成签到 ,获得积分20
26秒前
迷路迎南完成签到 ,获得积分10
26秒前
聆琳发布了新的文献求助20
27秒前
27秒前
cen发布了新的文献求助10
28秒前
照照完成签到,获得积分10
28秒前
郑先生完成签到 ,获得积分10
29秒前
kytlnj完成签到 ,获得积分0
30秒前
yesiDo完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011