材料科学
电化学
催化作用
化学工程
纳米颗粒
电池(电)
水溶液
碳纤维
功率密度
电子转移
纳米技术
吸附
电极
化学
物理化学
复合材料
有机化学
功率(物理)
物理
量子力学
复合数
工程类
作者
Fangyuan Wang,Guan Wang,Peilin Deng,Yao Chen,Jing Li,Daoxiong Wu,Zhitong Wang,Chongtai Wang,Yingjie Hua,Xinlong Tian
出处
期刊:Small
[Wiley]
日期:2023-03-15
卷期号:19 (25)
被引量:9
标识
DOI:10.1002/smll.202301128
摘要
Electrochemical CO2 reduction reaction (CO2 RR), powered by renewable electricity, has attracted great attention for producing high value-added fuels and chemicals, as well as feasibly mitigating CO2 emission problem. Here, this work reports a facile hard template strategy to prepare the Ni@N-C catalyst with core-shell structure, where nickel nanoparticles (Ni NPs) are encapsulated by thin nitrogen-doped carbon shells (N-C shells). The Ni@N-C catalyst has demonstrated a promising industrial current density of 236.7 mA cm-2 with the superb FECO of 97% at -1.1 V versus RHE. Moreover, Ni@N-C can drive the reversible Zn-CO2 battery with the largest power density of 1.64 mW cm-2 , and endure a tough cycling durability. These excellent performances are ascribed to the synergistic effect of Ni@N-C that Ni NPs can regulate the electronic microenvironment of N-doped carbon shells, which favor to enhance the CO2 adsorption capacity and the electron transfer capacity. Density functional theory calculations prove that the binding configuration of N-C located on the top of Ni slabs (Top-Ni@N-C) is the most thermodynamically stable and possess a lowest thermodynamic barrier for the formation of COOH* and the desorption of CO. This work may pioneer a new method on seeking high-efficiency and worthwhile electrocatalysts for CO2 RR and Zn-CO2 battery.
科研通智能强力驱动
Strongly Powered by AbleSci AI