MSCA-Net: Multi-scale contextual attention network for skin lesion segmentation

分割 人工智能 编码器 比例(比率) 利用 计算机科学 编码(集合论) 图像分割 模式识别(心理学) 计算机视觉 量子力学 集合(抽象数据类型) 计算机安全 物理 程序设计语言 操作系统
作者
Yongheng Sun,Duwei Dai,Qianni Zhang,Yaqi Wang,Songhua Xu,Chunfeng Lian
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:139: 109524-109524 被引量:60
标识
DOI:10.1016/j.patcog.2023.109524
摘要

Lesion segmentation algorithms automatically outline lesion areas in medical images, facilitating more effective identification and assessment of the clinically relevant features, and improving the efficacy and diagnosis accuracy. However, most fully convolutional network based segmentation methods suffer from spatial and contextual information loss when decreasing image resolution. To overcome this shortcoming, this paper proposes a skin lesion segmentation model, namely, the Multi-Scale Contextual Attention Network (MSCA-Net), which can exploit the multi-scale contextual information in images. Inspired by the skip connection of U-Net, we design a multi-scale bridge (MSB) module which interacts with multi-scale features to effectively fuse the multi-scale contextual information of the encoder and decoder path features. We further propose a global-local channel spatial attention module (GL-CSAM), aiming at capturing global contextual information. In addition, to take full advantage of the multi-scale features of the decoder, we propose a scale-aware deep supervision (SADS) module to achieve hierarchical iterative deep supervision. Comprehensive experimental results on the public dataset of ISIC 2017, ISIC 2018, and PH2 show that our proposed method outperforms other state-of-the-art methods, demonstrating the efficacy of our method in skin lesion segmentation. Our code is available at https://github.com/YonghengSun1997/MSCA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助王姗and帅白采纳,获得10
1秒前
5秒前
沉迷学习给沉迷学习的求助进行了留言
6秒前
6秒前
8秒前
DrD发布了新的文献求助10
11秒前
华仔应助迷路筝采纳,获得10
11秒前
666应助ljh采纳,获得10
12秒前
牛牛眉目发布了新的文献求助10
14秒前
14秒前
Ava应助关山月采纳,获得10
15秒前
一直发布了新的文献求助10
16秒前
登登发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
20秒前
爆米花应助华青ww采纳,获得10
20秒前
20秒前
21秒前
SKSK完成签到 ,获得积分10
23秒前
23秒前
yznfly应助科研通管家采纳,获得30
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
wysy应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
LaTeXer应助科研通管家采纳,获得200
23秒前
情怀应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361