Prediction of hydrogen production by magnetic field effect water electrolysis using artificial neural network predictive models

人工神经网络 制氢 电解 计算机科学 均方误差 人工智能 电解质 电极 数学 化学 统计 有机化学 物理化学
作者
Gülbahar Bilgiç,Başak Öztürk,Sema Atasever,Mükerrem Şahin,Hakan Kaplan
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:48 (53): 20164-20175 被引量:12
标识
DOI:10.1016/j.ijhydene.2023.02.082
摘要

Developing an efficient water electrolysis (WE) configuration is essential for high-efficiency hydrogen evolution reaction (HER) activity. In this regard, it has been proven that adding a magnetic field (MF) to the electrolysis system greatly improves the hydrogen output rate. In this study, we developed a method based on a machine learning approach to further improve the hydrogen production (HP) system with MF effect WE. An artificial neural network (ANN) model was developed to estimate the effect of input parameters such as MF, electrode material (cathode type), electrolyte type, supplied power (onset voltage), surface area, temperature, and time on HP in different electrolyzer systems. The network was built using 104 experimental data sets from various electrolysis studies. In the study, the percentage contributions of the input parameters to the HP rate and the optimum network architecture to minimize computation time and maximize network accuracy are presented. The model architecture of 7–12–1 was obtained using the best-hidden neurons. The Levenberg-Marquardt (LM) algorithm was used to train the multi-layer feed-forward neural network. Moreover, the utilization of a range of categorical variables to improve ANN prediction accuracy is a significant novelty in this work. Results demonstrated that the output of the trained ANN model fitted well with the experimental data. The test's correlation coefficient (R) and mean squared error (MSE) were 0.973 and 0.01125, respectively, confirming its powerful predictive performance. This ANN application is the first novel viable model to perform prediction using a neural network algorithm in the electrolysis process for MF effect HP using both categorical and continuous data inputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助50
1秒前
慕青应助木木采纳,获得30
2秒前
JamesPei应助飘飘素晴采纳,获得10
4秒前
LSY完成签到,获得积分10
5秒前
Unshouable完成签到,获得积分10
5秒前
jianglili完成签到,获得积分10
5秒前
8023完成签到,获得积分10
5秒前
嘉星糖完成签到,获得积分10
6秒前
6秒前
黄瓜橙橙发布了新的文献求助10
6秒前
bigfish完成签到,获得积分10
9秒前
勤奋尔冬完成签到 ,获得积分10
10秒前
认真真真真真完成签到,获得积分10
12秒前
14秒前
Cell完成签到 ,获得积分10
15秒前
15秒前
zhuxd完成签到,获得积分10
18秒前
加一完成签到,获得积分10
18秒前
gyf完成签到,获得积分10
19秒前
荣浩宇完成签到,获得积分10
19秒前
功不唐捐完成签到,获得积分10
20秒前
和谐的映梦完成签到,获得积分10
20秒前
20秒前
chi完成签到 ,获得积分10
20秒前
清风完成签到,获得积分10
22秒前
晚意完成签到 ,获得积分10
23秒前
莫愁完成签到,获得积分10
23秒前
WittingGU完成签到,获得积分0
24秒前
忙碌的数学人完成签到,获得积分10
26秒前
zmx发布了新的文献求助10
27秒前
28秒前
因为我从来是那样完成签到,获得积分10
28秒前
SDS完成签到 ,获得积分10
28秒前
飘飘素晴完成签到,获得积分10
29秒前
桐桐应助可露丽采纳,获得10
30秒前
杠赛来完成签到,获得积分10
31秒前
黑海不开灯完成签到 ,获得积分10
32秒前
keke完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027