亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of hydrogen production by magnetic field effect water electrolysis using artificial neural network predictive models

人工神经网络 制氢 电解 计算机科学 均方误差 人工智能 电解质 电极 数学 化学 统计 有机化学 物理化学
作者
Gülbahar Bilgiç,Başak Öztürk,Sema Atasever,Mükerrem Şahin,Hakan Kaplan
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (53): 20164-20175 被引量:12
标识
DOI:10.1016/j.ijhydene.2023.02.082
摘要

Developing an efficient water electrolysis (WE) configuration is essential for high-efficiency hydrogen evolution reaction (HER) activity. In this regard, it has been proven that adding a magnetic field (MF) to the electrolysis system greatly improves the hydrogen output rate. In this study, we developed a method based on a machine learning approach to further improve the hydrogen production (HP) system with MF effect WE. An artificial neural network (ANN) model was developed to estimate the effect of input parameters such as MF, electrode material (cathode type), electrolyte type, supplied power (onset voltage), surface area, temperature, and time on HP in different electrolyzer systems. The network was built using 104 experimental data sets from various electrolysis studies. In the study, the percentage contributions of the input parameters to the HP rate and the optimum network architecture to minimize computation time and maximize network accuracy are presented. The model architecture of 7–12–1 was obtained using the best-hidden neurons. The Levenberg-Marquardt (LM) algorithm was used to train the multi-layer feed-forward neural network. Moreover, the utilization of a range of categorical variables to improve ANN prediction accuracy is a significant novelty in this work. Results demonstrated that the output of the trained ANN model fitted well with the experimental data. The test's correlation coefficient (R) and mean squared error (MSE) were 0.973 and 0.01125, respectively, confirming its powerful predictive performance. This ANN application is the first novel viable model to perform prediction using a neural network algorithm in the electrolysis process for MF effect HP using both categorical and continuous data inputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nxy完成签到 ,获得积分10
3秒前
张艳茹完成签到 ,获得积分10
8秒前
曲聋五完成签到 ,获得积分0
12秒前
852应助世良采纳,获得10
13秒前
15秒前
19秒前
舒心的蜜蜂完成签到,获得积分10
21秒前
AJ完成签到,获得积分10
23秒前
23秒前
基根豹发布了新的文献求助10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得30
24秒前
852应助科研通管家采纳,获得10
24秒前
世良发布了新的文献求助10
29秒前
123study0完成签到,获得积分10
30秒前
欧尼酱完成签到 ,获得积分10
37秒前
40秒前
搞搞科研完成签到 ,获得积分10
43秒前
乐乐应助mitsuha采纳,获得10
43秒前
刘生发布了新的文献求助10
43秒前
mathmotive完成签到,获得积分10
45秒前
47秒前
乐观摸摸头完成签到 ,获得积分10
51秒前
丁静完成签到 ,获得积分0
55秒前
唐新惠完成签到 ,获得积分10
59秒前
哭泣的鞋子完成签到,获得积分10
1分钟前
1分钟前
龙龙冲发布了新的文献求助20
1分钟前
午盏完成签到 ,获得积分10
1分钟前
高维C柠檬关注了科研通微信公众号
1分钟前
大个应助君齐采纳,获得10
1分钟前
CodeCraft应助龙龙冲采纳,获得10
1分钟前
1分钟前
1分钟前
mitsuha发布了新的文献求助10
1分钟前
AX完成签到,获得积分10
1分钟前
许小六完成签到 ,获得积分10
1分钟前
1分钟前
灵巧凝莲发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650563
求助须知:如何正确求助?哪些是违规求助? 4781019
关于积分的说明 15052302
捐赠科研通 4809466
什么是DOI,文献DOI怎么找? 2572282
邀请新用户注册赠送积分活动 1528450
关于科研通互助平台的介绍 1487286