Prediction of hydrogen production by magnetic field effect water electrolysis using artificial neural network predictive models

人工神经网络 制氢 电解 计算机科学 均方误差 人工智能 电解质 电极 数学 化学 统计 有机化学 物理化学
作者
Gülbahar Bilgiç,Başak Öztürk,Sema Atasever,Mükerrem Şahin,Hakan Kaplan
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (53): 20164-20175 被引量:12
标识
DOI:10.1016/j.ijhydene.2023.02.082
摘要

Developing an efficient water electrolysis (WE) configuration is essential for high-efficiency hydrogen evolution reaction (HER) activity. In this regard, it has been proven that adding a magnetic field (MF) to the electrolysis system greatly improves the hydrogen output rate. In this study, we developed a method based on a machine learning approach to further improve the hydrogen production (HP) system with MF effect WE. An artificial neural network (ANN) model was developed to estimate the effect of input parameters such as MF, electrode material (cathode type), electrolyte type, supplied power (onset voltage), surface area, temperature, and time on HP in different electrolyzer systems. The network was built using 104 experimental data sets from various electrolysis studies. In the study, the percentage contributions of the input parameters to the HP rate and the optimum network architecture to minimize computation time and maximize network accuracy are presented. The model architecture of 7–12–1 was obtained using the best-hidden neurons. The Levenberg-Marquardt (LM) algorithm was used to train the multi-layer feed-forward neural network. Moreover, the utilization of a range of categorical variables to improve ANN prediction accuracy is a significant novelty in this work. Results demonstrated that the output of the trained ANN model fitted well with the experimental data. The test's correlation coefficient (R) and mean squared error (MSE) were 0.973 and 0.01125, respectively, confirming its powerful predictive performance. This ANN application is the first novel viable model to perform prediction using a neural network algorithm in the electrolysis process for MF effect HP using both categorical and continuous data inputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诗桃发布了新的文献求助10
1秒前
所所应助布兜兜采纳,获得30
1秒前
褚浩然发布了新的文献求助10
1秒前
聪明凉面发布了新的文献求助10
1秒前
Hello应助FG采纳,获得10
1秒前
724完成签到,获得积分10
1秒前
浮游应助Jane采纳,获得10
2秒前
平淡安阳发布了新的文献求助10
2秒前
mingjie完成签到,获得积分10
2秒前
2秒前
xuexue完成签到,获得积分10
2秒前
科研通AI6应助闪闪语雪采纳,获得10
2秒前
xqa发布了新的文献求助10
2秒前
乐乐应助单身的翠容采纳,获得30
2秒前
依然小爽完成签到,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
嘻嘻哈哈应助科研通管家采纳,获得10
3秒前
lcj应助科研通管家采纳,获得20
3秒前
Hello应助科研通管家采纳,获得10
3秒前
FashionBoy应助洞两采纳,获得50
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
luckydog完成签到 ,获得积分10
3秒前
3秒前
ven发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助黎日新采纳,获得10
4秒前
玥月完成签到 ,获得积分10
4秒前
小橘发布了新的文献求助10
5秒前
5秒前
张奇强发布了新的文献求助20
5秒前
huizhao完成签到,获得积分10
5秒前
wangyan给wangyan的求助进行了留言
5秒前
Re完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277