已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of hydrogen production by magnetic field effect water electrolysis using artificial neural network predictive models

人工神经网络 制氢 电解 计算机科学 均方误差 人工智能 电解质 电极 数学 化学 统计 有机化学 物理化学
作者
Gülbahar Bilgiç,Başak Öztürk,Sema Atasever,Mükerrem Şahin,Hakan Kaplan
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (53): 20164-20175 被引量:12
标识
DOI:10.1016/j.ijhydene.2023.02.082
摘要

Developing an efficient water electrolysis (WE) configuration is essential for high-efficiency hydrogen evolution reaction (HER) activity. In this regard, it has been proven that adding a magnetic field (MF) to the electrolysis system greatly improves the hydrogen output rate. In this study, we developed a method based on a machine learning approach to further improve the hydrogen production (HP) system with MF effect WE. An artificial neural network (ANN) model was developed to estimate the effect of input parameters such as MF, electrode material (cathode type), electrolyte type, supplied power (onset voltage), surface area, temperature, and time on HP in different electrolyzer systems. The network was built using 104 experimental data sets from various electrolysis studies. In the study, the percentage contributions of the input parameters to the HP rate and the optimum network architecture to minimize computation time and maximize network accuracy are presented. The model architecture of 7–12–1 was obtained using the best-hidden neurons. The Levenberg-Marquardt (LM) algorithm was used to train the multi-layer feed-forward neural network. Moreover, the utilization of a range of categorical variables to improve ANN prediction accuracy is a significant novelty in this work. Results demonstrated that the output of the trained ANN model fitted well with the experimental data. The test's correlation coefficient (R) and mean squared error (MSE) were 0.973 and 0.01125, respectively, confirming its powerful predictive performance. This ANN application is the first novel viable model to perform prediction using a neural network algorithm in the electrolysis process for MF effect HP using both categorical and continuous data inputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zizi完成签到 ,获得积分10
1秒前
1秒前
向南发布了新的文献求助10
1秒前
你好完成签到 ,获得积分10
1秒前
2秒前
Hello应助向南采纳,获得10
7秒前
酷波er应助抱抱龙采纳,获得10
8秒前
Natrual完成签到 ,获得积分10
8秒前
y13333完成签到,获得积分10
8秒前
Hello应助Laputa采纳,获得10
9秒前
科研通AI6应助小苹果采纳,获得10
9秒前
11秒前
江東完成签到 ,获得积分10
11秒前
着急的猴完成签到 ,获得积分10
12秒前
殷琛发布了新的文献求助10
13秒前
姜姜发布了新的文献求助10
15秒前
三石呦423发布了新的文献求助50
15秒前
15秒前
第二支羽毛完成签到,获得积分10
15秒前
16秒前
16秒前
抱抱龙发布了新的文献求助10
19秒前
碧蓝丹烟完成签到 ,获得积分10
20秒前
文静的海完成签到,获得积分10
20秒前
Yi羿完成签到 ,获得积分10
23秒前
ll完成签到 ,获得积分10
24秒前
高贵书兰完成签到 ,获得积分10
24秒前
24秒前
852应助学术蝗虫采纳,获得10
25秒前
六幺七完成签到 ,获得积分10
25秒前
26秒前
不与仙同完成签到 ,获得积分10
28秒前
xmsyq完成签到 ,获得积分10
29秒前
31秒前
科研通AI6应助三石呦423采纳,获得10
32秒前
昔年若许完成签到,获得积分10
34秒前
34秒前
李鹏辉完成签到 ,获得积分10
36秒前
37秒前
打打应助不拿拿采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627596
求助须知:如何正确求助?哪些是违规求助? 4714216
关于积分的说明 14962790
捐赠科研通 4785168
什么是DOI,文献DOI怎么找? 2555019
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476819