重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Prediction of hydrogen production by magnetic field effect water electrolysis using artificial neural network predictive models

人工神经网络 制氢 电解 计算机科学 均方误差 人工智能 电解质 电极 数学 化学 统计 有机化学 物理化学
作者
Gülbahar Bilgiç,Başak Öztürk,Sema Atasever,Mükerrem Şahin,Hakan Kaplan
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (53): 20164-20175 被引量:12
标识
DOI:10.1016/j.ijhydene.2023.02.082
摘要

Developing an efficient water electrolysis (WE) configuration is essential for high-efficiency hydrogen evolution reaction (HER) activity. In this regard, it has been proven that adding a magnetic field (MF) to the electrolysis system greatly improves the hydrogen output rate. In this study, we developed a method based on a machine learning approach to further improve the hydrogen production (HP) system with MF effect WE. An artificial neural network (ANN) model was developed to estimate the effect of input parameters such as MF, electrode material (cathode type), electrolyte type, supplied power (onset voltage), surface area, temperature, and time on HP in different electrolyzer systems. The network was built using 104 experimental data sets from various electrolysis studies. In the study, the percentage contributions of the input parameters to the HP rate and the optimum network architecture to minimize computation time and maximize network accuracy are presented. The model architecture of 7–12–1 was obtained using the best-hidden neurons. The Levenberg-Marquardt (LM) algorithm was used to train the multi-layer feed-forward neural network. Moreover, the utilization of a range of categorical variables to improve ANN prediction accuracy is a significant novelty in this work. Results demonstrated that the output of the trained ANN model fitted well with the experimental data. The test's correlation coefficient (R) and mean squared error (MSE) were 0.973 and 0.01125, respectively, confirming its powerful predictive performance. This ANN application is the first novel viable model to perform prediction using a neural network algorithm in the electrolysis process for MF effect HP using both categorical and continuous data inputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无名完成签到,获得积分10
刚刚
李爱国应助Huguizhou采纳,获得10
1秒前
科研通AI6应助rh采纳,获得10
2秒前
2秒前
威武的冷风完成签到,获得积分10
3秒前
3秒前
天下无贼发布了新的文献求助10
3秒前
lovexz完成签到,获得积分10
3秒前
gggkky关注了科研通微信公众号
4秒前
彭于彦祖应助小药童采纳,获得150
4秒前
czq发布了新的文献求助10
5秒前
6秒前
贪玩藏今发布了新的文献求助10
6秒前
丘比特应助nimeng123采纳,获得10
7秒前
张雅露完成签到,获得积分10
7秒前
8秒前
我是老大应助蓓蓓0303采纳,获得10
8秒前
8秒前
浮游应助1asfdwe采纳,获得10
8秒前
9秒前
9秒前
破锋天下发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
神勇玉米应助浓浓的淡淡采纳,获得10
12秒前
充电宝应助贪玩藏今采纳,获得10
12秒前
天下无贼完成签到,获得积分20
12秒前
12秒前
852应助胖小羊采纳,获得10
13秒前
超级黄桃发布了新的文献求助10
14秒前
充电宝应助欧阳铭采纳,获得10
14秒前
15秒前
科研通AI6应助Duang采纳,获得10
15秒前
15秒前
花陵发布了新的文献求助10
16秒前
顶真珍珠发布了新的文献求助10
16秒前
橘色天际线完成签到,获得积分10
17秒前
寻菡完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739