清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Graph Neural Network-Based Distribution System State Estimators

计算机科学 估计员 可扩展性 人工神经网络 图形 人工智能 机器学习 节点(物理) 数据挖掘 理论计算机科学 数学 工程类 统计 结构工程 数据库
作者
Rahul Madbhavi,Balasubramaniam Natarajan,Babji Srinivasan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tii.2023.3248082
摘要

State estimation is an essential tool for situational awareness and control to ensure safe operation. While current state-of-the-art techniques, such as model-based sparsity-aware state estimators, provide superior performance over conventional approaches, they have poor scalability and require large computational times. These limitations can be overcome by utilizing deep learning models such as deep neural networks (DNNs). However, DNNs are prone to over-fitting and cannot incorporate structural information of networks. Furthermore, current model-based approaches require detailed knowledge of network parameters that may be unavailable in large systems. Therefore, new models with comparable performance are desired that either do not require network parameters or that can work using partial knowledge of these parameters. Recently, graph neural networks (GNNs) have become popular deep learning models that extend neural models to graph structures and incorporate structural information of the networks through graph structures. Therefore, this article proposes GNN-based state estimators by modeling the state estimation problem in distribution systems as node-level prediction problems on their graph representations with state measurement matrices and tensors as input features. Feature scaling and pseudo-measurement generation phases are introduced to enhance their performance. These approaches are evaluated on the IEEE 33, 37-node systems, and an unbalanced three-phase 559-node system. The proposed approaches provide comparable performance to sparsity-aware state estimators while using significantly lower computational times. The GNN-based approaches produce state estimates conforming to the power flow constraints without prior knowledge of the network parameters, thus suggesting that the proposed models can learn the system's underlying physical flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿巴阿巴完成签到,获得积分20
23秒前
CodeCraft应助baobeikk采纳,获得10
25秒前
33秒前
baobeikk发布了新的文献求助10
39秒前
丘比特应助科研通管家采纳,获得10
41秒前
44秒前
baobeikk完成签到,获得积分10
47秒前
50秒前
1分钟前
dajiaozhuli发布了新的文献求助10
1分钟前
远山完成签到 ,获得积分10
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
上善若水完成签到 ,获得积分10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
dajiaozhuli发布了新的文献求助10
3分钟前
3分钟前
starleo完成签到,获得积分10
3分钟前
qiqi发布了新的文献求助30
3分钟前
dajiaozhuli完成签到,获得积分20
3分钟前
giving完成签到 ,获得积分10
3分钟前
qiqi完成签到,获得积分10
4分钟前
CodeCraft应助1111采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
许之北完成签到 ,获得积分10
5分钟前
羊羊羊完成签到 ,获得积分10
5分钟前
bing完成签到 ,获得积分10
6分钟前
实力不允许完成签到 ,获得积分10
6分钟前
kevinjiang完成签到,获得积分10
6分钟前
无花果应助科研通管家采纳,获得10
6分钟前
6分钟前
1111发布了新的文献求助10
6分钟前
nanali19完成签到,获得积分10
6分钟前
junhan发布了新的文献求助10
7分钟前
数学情缘完成签到 ,获得积分10
8分钟前
研友_nxw2xL完成签到,获得积分10
8分钟前
艳艳子发布了新的文献求助20
8分钟前
muriel完成签到,获得积分10
8分钟前
8分钟前
瘦瘦依瑶完成签到,获得积分10
8分钟前
HS完成签到,获得积分10
9分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261573
求助须知:如何正确求助?哪些是违规求助? 2902466
关于积分的说明 8319758
捐赠科研通 2572285
什么是DOI,文献DOI怎么找? 1397536
科研通“疑难数据库(出版商)”最低求助积分说明 653809
邀请新用户注册赠送积分活动 632285