已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

IID-MEF: A multi-exposure fusion network based on intrinsic image decomposition

计算机科学 人工智能 计算机视觉 加权 融合 忠诚 比例(比率) 颜色校正 图像融合 图像(数学) 像素 过程(计算) 操作系统 物理 放射科 哲学 电信 医学 量子力学 语言学
作者
Hao Zhang,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:95: 326-340 被引量:14
标识
DOI:10.1016/j.inffus.2023.02.031
摘要

This paper follows the idea of divide and conquer to propose a multi-exposure fusion network for the unsupervised generation of high dynamic range-like images. We develop a new intrinsic image decomposition (IID) network based on our modified IID model to produce the reflectance, shading, and color components from source images, which respectively represent the texture structure, lighting condition, and visible color distribution of the imaging scene. Three fusion sub-networks are then designed to process these different components, producing pleasing images with rich structures, reasonable lighting, and suitable color. Specifically, we first develop a reflectance fusion network to integrate the reflectance components, in which an adaptive pixel-scale selection strategy is adopted to dynamically guide the network to preserve rich scene textures. Then, a shading fusion network with the adaptive global image-scale weighting strategy is designed to fulfill lighting adjustment, which can generate suitable illumination by defining the lighting adjustment as a game between the illumination of source images. Finally, we propose a color fusion network that embeds both pixel-scale and image-scale strategies, which can guarantee a pleasing scene color distribution with a specifically designed color fidelity loss. Extensive experiments demonstrate the superiority of our method over state-of-the-art methods in terms of texture integration, illumination adjustment, and color fidelity. Moreover, our method can be applied to fulfill tasks of the single low-light image enhancement and the single overexposed image correction with promising performance. The code is publicly available at https://github.com/HaoZhang1018/IID-MEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
草莓小妹发布了新的文献求助10
4秒前
leoxiao发布了新的文献求助30
4秒前
罐罐完成签到,获得积分10
5秒前
slx发布了新的文献求助10
5秒前
fu发布了新的文献求助20
5秒前
青木香发布了新的文献求助10
6秒前
minion完成签到,获得积分10
7秒前
wszhang完成签到,获得积分10
7秒前
qqq发布了新的文献求助10
7秒前
hhh完成签到 ,获得积分10
7秒前
7秒前
悄悄.完成签到,获得积分10
8秒前
12秒前
解语花发布了新的文献求助10
13秒前
15秒前
852应助夜雨声烦采纳,获得10
15秒前
18秒前
微笑的铸海完成签到 ,获得积分10
21秒前
思源应助罐罐采纳,获得10
22秒前
25秒前
JamesPei应助斑鸠采纳,获得10
28秒前
Guoqiang发布了新的文献求助10
29秒前
31秒前
永不言弃的lx完成签到,获得积分10
31秒前
35秒前
chenmeimei2012完成签到,获得积分10
37秒前
39秒前
善学以致用应助Anserbe采纳,获得10
40秒前
爆米花应助xiaixax采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994330
求助须知:如何正确求助?哪些是违规求助? 3534764
关于积分的说明 11266452
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749