生物电子学
接口
纳米技术
基质(水族馆)
有机电子学
数码产品
材料科学
导电聚合物
微电极
电极
化学
聚合物
计算机科学
晶体管
生物传感器
电气工程
生物
工程类
计算机硬件
物理化学
复合材料
电压
生态学
作者
Xenofon Strakosas,Hanne Biesmans,Tobias Abrahamsson,Karin Hellman,Malin Silverå Ejneby,Mary J. Donahue,Peter Ekström,Fredrik Ek,Marios Savvakis,Martin Hjort,David Bliman,Mathieu Linares,Caroline Lindholm,Eleni Stavrinidou,Jennifer Y. Gerasimov,Daniel T. Simon,Roger Olsson,Magnus Berggren
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-02-24
卷期号:379 (6634): 795-802
被引量:67
标识
DOI:10.1126/science.adc9998
摘要
Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.
科研通智能强力驱动
Strongly Powered by AbleSci AI