清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

地标 计算机科学 人工智能 分割 计算机视觉 任务(项目管理) 模式识别(心理学) 工程类 系统工程
作者
Xiang Li,Songcen Lv,Minglei Li,Jiusi Zhang,Yuchen Jiang,Yong Qin,Hao Luo,Shen Yin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2274-2285 被引量:36
标识
DOI:10.1109/tmi.2023.3247543
摘要

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强紫山发布了新的文献求助20
15秒前
16秒前
ceeray23发布了新的文献求助20
22秒前
山楂完成签到,获得积分10
28秒前
充电宝应助科研通管家采纳,获得10
55秒前
李爱国应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
黄乐丹完成签到 ,获得积分10
1分钟前
老石完成签到 ,获得积分10
1分钟前
1分钟前
EKKOO发布了新的文献求助10
1分钟前
汉堡包应助samsahpiyaz采纳,获得10
1分钟前
EKKOO完成签到,获得积分20
2分钟前
2分钟前
samsahpiyaz发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Criminology34应助白华苍松采纳,获得10
2分钟前
zzhui完成签到,获得积分10
2分钟前
2分钟前
烂漫念文发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
咯咯咯完成签到 ,获得积分10
3分钟前
烂漫念文完成签到,获得积分10
3分钟前
翁雁丝完成签到 ,获得积分10
3分钟前
charih完成签到 ,获得积分10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
无极微光应助白华苍松采纳,获得20
5分钟前
合适黑米完成签到,获得积分10
6分钟前
6分钟前
合适黑米发布了新的文献求助10
6分钟前
sduweiyu完成签到 ,获得积分10
6分钟前
lizi完成签到,获得积分10
6分钟前
6分钟前
无极微光应助白华苍松采纳,获得20
6分钟前
合适黑米发布了新的文献求助10
6分钟前
minnie完成签到 ,获得积分10
7分钟前
DX120210165完成签到,获得积分10
7分钟前
zyjsunye完成签到 ,获得积分10
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614358
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531