SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

地标 计算机科学 人工智能 分割 计算机视觉 任务(项目管理) 模式识别(心理学) 工程类 系统工程
作者
Xiang Li,Songcen Lv,Minglei Li,Jiusi Zhang,Yuchen Jiang,Yong Qin,Hao Luo,Shen Yin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2274-2285 被引量:36
标识
DOI:10.1109/tmi.2023.3247543
摘要

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青椒应助yongon采纳,获得30
1秒前
Criminology34应助郗文佳采纳,获得10
3秒前
6秒前
慕青应助able采纳,获得10
6秒前
yang发布了新的文献求助10
7秒前
陆小果发布了新的文献求助30
7秒前
无名的人完成签到 ,获得积分10
7秒前
狂野白梅发布了新的文献求助10
11秒前
12秒前
13秒前
wlx发布了新的文献求助10
13秒前
明若清完成签到,获得积分10
14秒前
嘎嘎的小羊完成签到,获得积分20
14秒前
Hello应助wlei采纳,获得10
14秒前
夏大雨发布了新的文献求助10
14秒前
pie应助yizhi猫采纳,获得10
15秒前
16秒前
哇哇哇发布了新的文献求助10
17秒前
18秒前
saf0852完成签到,获得积分10
18秒前
plant发布了新的文献求助10
19秒前
21秒前
zhouzhou完成签到,获得积分10
22秒前
22秒前
夏大雨完成签到,获得积分10
24秒前
苇一完成签到,获得积分10
24秒前
77发布了新的文献求助10
25秒前
26秒前
大模型应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
ccm应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
xxfsx应助科研通管家采纳,获得10
27秒前
xxfsx应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288530
求助须知:如何正确求助?哪些是违规求助? 4440409
关于积分的说明 13824512
捐赠科研通 4322629
什么是DOI,文献DOI怎么找? 2372687
邀请新用户注册赠送积分活动 1368119
关于科研通互助平台的介绍 1331979