已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

地标 计算机科学 人工智能 分割 计算机视觉 任务(项目管理) 模式识别(心理学) 工程类 系统工程
作者
Xiang Li,Songcen Lv,Minglei Li,Jiusi Zhang,Yuchen Jiang,Yong Qin,Hao Luo,Shen Yin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2274-2285 被引量:36
标识
DOI:10.1109/tmi.2023.3247543
摘要

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助七宝大当家采纳,获得10
1秒前
2秒前
抗氧剂发布了新的文献求助10
2秒前
llk完成签到 ,获得积分10
2秒前
可可钳完成签到,获得积分10
7秒前
7秒前
本本完成签到 ,获得积分10
7秒前
科研通AI2S应助Ye采纳,获得10
7秒前
8秒前
莘莘学子完成签到 ,获得积分10
9秒前
10秒前
简单完成签到 ,获得积分10
10秒前
慕青应助安详怀亦采纳,获得10
11秒前
JINFA发布了新的文献求助10
12秒前
13秒前
14秒前
Rdx发布了新的文献求助10
14秒前
16秒前
Yxs发布了新的文献求助10
16秒前
喜悦诗翠完成签到 ,获得积分10
16秒前
17秒前
Ye完成签到,获得积分10
17秒前
极速小鱼完成签到,获得积分10
19秒前
xie完成签到 ,获得积分10
19秒前
Oculus完成签到 ,获得积分10
20秒前
于思枫完成签到,获得积分10
21秒前
在水一方应助一榔头采纳,获得10
22秒前
一辰不染完成签到,获得积分10
22秒前
gaowei完成签到 ,获得积分10
23秒前
姆姆没买完成签到 ,获得积分0
27秒前
Criminology34应助yiyi采纳,获得10
27秒前
30秒前
清新的宛丝完成签到,获得积分10
31秒前
在水一方应助Rdx采纳,获得10
31秒前
小二郎应助lameliu采纳,获得10
33秒前
知闲完成签到,获得积分20
34秒前
狂野的梦之完成签到,获得积分10
34秒前
35秒前
王某人完成签到 ,获得积分10
36秒前
吕健发布了新的文献求助50
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759