清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

地标 计算机科学 人工智能 分割 计算机视觉 任务(项目管理) 模式识别(心理学) 工程类 系统工程
作者
Xiang Li,Songcen Lv,Minglei Li,Jiusi Zhang,Yuchen Jiang,Yong Qin,Hao Luo,Shen Yin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2274-2285 被引量:36
标识
DOI:10.1109/tmi.2023.3247543
摘要

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wushuimei完成签到 ,获得积分10
2秒前
theo完成签到 ,获得积分10
5秒前
愛研究完成签到,获得积分10
6秒前
明亮小天鹅完成签到,获得积分20
7秒前
乐乐应助sofardli采纳,获得10
12秒前
阿尼完成签到 ,获得积分10
12秒前
allover完成签到,获得积分10
23秒前
23秒前
多边形完成签到 ,获得积分10
24秒前
sofardli发布了新的文献求助10
29秒前
CQ完成签到 ,获得积分10
43秒前
1分钟前
tty应助sofardli采纳,获得10
1分钟前
chenmeimei2012完成签到 ,获得积分10
1分钟前
1分钟前
Kevin发布了新的文献求助10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
科研通AI2S应助Kevin采纳,获得10
1分钟前
叁月二完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
czj完成签到 ,获得积分10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
里昂义务发布了新的文献求助10
1分钟前
善善完成签到 ,获得积分10
1分钟前
某某完成签到 ,获得积分10
1分钟前
落寞黎昕完成签到 ,获得积分10
2分钟前
雪山飞龙发布了新的文献求助30
2分钟前
奋斗的妙海完成签到 ,获得积分0
2分钟前
白昼の月完成签到 ,获得积分0
2分钟前
像猫的狗完成签到 ,获得积分10
2分钟前
TTTHANKS完成签到 ,获得积分10
3分钟前
xiaodong完成签到,获得积分10
3分钟前
深情安青应助荆棘鸟采纳,获得10
3分钟前
gao完成签到 ,获得积分10
3分钟前
扶我起来写论文完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
刘辰完成签到 ,获得积分10
4分钟前
王佳豪完成签到,获得积分10
4分钟前
氟锑酸完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582957
求助须知:如何正确求助?哪些是违规求助? 4000527
关于积分的说明 12382572
捐赠科研通 3675689
什么是DOI,文献DOI怎么找? 2025983
邀请新用户注册赠送积分活动 1059683
科研通“疑难数据库(出版商)”最低求助积分说明 946363