亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

地标 计算机科学 人工智能 分割 计算机视觉 任务(项目管理) 模式识别(心理学) 工程类 系统工程
作者
Xiang Li,Songcen Lv,Minglei Li,Jiusi Zhang,Yuchen Jiang,Yong Qin,Hao Luo,Shen Yin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2274-2285 被引量:36
标识
DOI:10.1109/tmi.2023.3247543
摘要

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助zizideng采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
22秒前
27秒前
zizideng发布了新的文献求助10
32秒前
zizideng完成签到,获得积分10
41秒前
h0jian09完成签到,获得积分10
1分钟前
爆米花应助zhangxiaoqing采纳,获得10
1分钟前
小二郎应助达西苏采纳,获得10
1分钟前
1分钟前
笑傲完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zhangxiaoqing发布了新的文献求助10
1分钟前
2分钟前
达西苏发布了新的文献求助10
2分钟前
达西苏完成签到,获得积分10
2分钟前
激动的似狮完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助10
3分钟前
小青椒应助霸气面包采纳,获得10
3分钟前
pups发布了新的文献求助10
3分钟前
3分钟前
wmm完成签到,获得积分10
3分钟前
Jasper应助pups采纳,获得20
4分钟前
Wei发布了新的文献求助20
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
不如看海完成签到 ,获得积分10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI6应助信陵君无忌采纳,获得10
4分钟前
原子超人完成签到,获得积分10
5分钟前
wanci应助ma采纳,获得10
5分钟前
5分钟前
ma发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
支雨泽完成签到,获得积分10
6分钟前
6分钟前
桐桐应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671275
求助须知:如何正确求助?哪些是违规求助? 4913655
关于积分的说明 15134379
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586738
邀请新用户注册赠送积分活动 1540332
关于科研通互助平台的介绍 1498523