SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

地标 计算机科学 人工智能 分割 计算机视觉 任务(项目管理) 模式识别(心理学) 工程类 系统工程
作者
Xiang Li,Songcen Lv,Minglei Li,Jiusi Zhang,Yuchen Jiang,Yong Qin,Hao Luo,Shen Yin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2274-2285 被引量:36
标识
DOI:10.1109/tmi.2023.3247543
摘要

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中夜天完成签到 ,获得积分10
1秒前
andou完成签到,获得积分10
1秒前
2秒前
雪下卧眠完成签到,获得积分10
4秒前
wangyy65完成签到 ,获得积分10
4秒前
Lucas应助just采纳,获得10
4秒前
吼吼哈哈完成签到,获得积分10
5秒前
顾矜应助无辜的笙采纳,获得10
5秒前
又是一年完成签到,获得积分10
6秒前
在水一方应助danan采纳,获得10
7秒前
xuqiansd完成签到,获得积分10
7秒前
figure完成签到 ,获得积分10
7秒前
xiaohaitao发布了新的文献求助10
8秒前
伶俐安萱完成签到,获得积分10
8秒前
奶油蜜豆卷完成签到,获得积分10
8秒前
一地狗粮完成签到,获得积分10
8秒前
Maxpan完成签到,获得积分10
9秒前
tanchihao完成签到,获得积分10
10秒前
英姑应助小落采纳,获得10
10秒前
一只黑麂完成签到,获得积分10
10秒前
务实老虎完成签到,获得积分10
11秒前
王冬雪完成签到,获得积分10
11秒前
在途中完成签到,获得积分10
11秒前
just完成签到,获得积分20
11秒前
感动满天完成签到,获得积分10
11秒前
领导范儿应助许起眸采纳,获得10
11秒前
萧水白应助这颗糖好tian采纳,获得10
11秒前
duonicola发布了新的文献求助10
11秒前
Grinder完成签到 ,获得积分10
12秒前
甜美的月饼完成签到,获得积分10
12秒前
Master_Ye完成签到,获得积分10
12秒前
June完成签到,获得积分10
13秒前
13秒前
幽默的忆霜完成签到 ,获得积分10
13秒前
阿桂完成签到 ,获得积分10
14秒前
15秒前
Jmoriarty完成签到,获得积分10
15秒前
123654完成签到,获得积分10
16秒前
芥楠完成签到,获得积分10
17秒前
Galaxy完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478