SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

地标 计算机科学 人工智能 分割 计算机视觉 任务(项目管理) 模式识别(心理学) 工程类 系统工程
作者
Xiang Li,Songcen Lv,Minglei Li,Jiusi Zhang,Yuchen Jiang,Yong Qin,Hao Luo,Shen Yin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2274-2285 被引量:36
标识
DOI:10.1109/tmi.2023.3247543
摘要

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助little elvins采纳,获得10
刚刚
烟花应助符欣瑜采纳,获得10
2秒前
3秒前
媛媛发布了新的文献求助10
4秒前
5秒前
5秒前
EmmaZ完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
马树成完成签到,获得积分10
8秒前
9秒前
那都通发布了新的文献求助10
9秒前
9秒前
may完成签到 ,获得积分10
10秒前
嘒彼星发布了新的文献求助10
11秒前
LI完成签到,获得积分20
11秒前
科研通AI6应助优美的听筠采纳,获得10
11秒前
何时发布了新的文献求助10
11秒前
Onism完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
潇洒的柚子关注了科研通微信公众号
13秒前
希望天下0贩的0应助Atopos采纳,获得10
14秒前
14秒前
夜雨听笑完成签到,获得积分10
14秒前
符欣瑜发布了新的文献求助10
16秒前
huihui发布了新的文献求助10
16秒前
领会发布了新的文献求助10
16秒前
water完成签到,获得积分10
16秒前
17秒前
17秒前
汉堡包应助zhouchen采纳,获得10
18秒前
Joyce发布了新的文献求助10
19秒前
天南发布了新的文献求助100
20秒前
21秒前
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571822
求助须知:如何正确求助?哪些是违规求助? 4656993
关于积分的说明 14718727
捐赠科研通 4597831
什么是DOI,文献DOI怎么找? 2523395
邀请新用户注册赠送积分活动 1494239
关于科研通互助平台的介绍 1464312