SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

地标 计算机科学 人工智能 分割 计算机视觉 任务(项目管理) 模式识别(心理学) 工程类 系统工程
作者
Xiang Li,Songcen Lv,Minglei Li,Jiusi Zhang,Yuchen Jiang,Yong Qin,Hao Luo,Shen Yin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2274-2285 被引量:26
标识
DOI:10.1109/tmi.2023.3247543
摘要

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gh完成签到,获得积分20
刚刚
二狗发布了新的文献求助10
2秒前
栗子应助阿巴阿巴采纳,获得10
2秒前
乐乐应助123456qi采纳,获得10
3秒前
AAA论文求过完成签到 ,获得积分10
3秒前
手机应助dasdsa采纳,获得10
4秒前
fzh完成签到,获得积分20
5秒前
珀尔完成签到,获得积分10
5秒前
小鱼爱吃肉应助yolanda采纳,获得10
6秒前
小柒发布了新的文献求助10
7秒前
7秒前
7秒前
Francis_完成签到,获得积分10
9秒前
如意的雪晴完成签到,获得积分10
9秒前
YY完成签到,获得积分10
9秒前
10秒前
10秒前
萧暖发布了新的文献求助10
12秒前
大根队长完成签到,获得积分10
12秒前
倒数21关注了科研通微信公众号
12秒前
YY发布了新的文献求助10
13秒前
在水一方应助阿包采纳,获得10
13秒前
orixero应助Macaco采纳,获得10
13秒前
14秒前
14秒前
gh关注了科研通微信公众号
15秒前
15秒前
弹棉花完成签到,获得积分10
15秒前
16秒前
17秒前
19秒前
司徒恋风发布了新的文献求助10
20秒前
yy发布了新的文献求助10
20秒前
袁大头发布了新的文献求助10
22秒前
上官若男应助一tiao小于采纳,获得10
22秒前
tsq完成签到,获得积分10
23秒前
星愿发布了新的文献求助10
24秒前
meili发布了新的文献求助10
24秒前
Fine发布了新的文献求助10
24秒前
24秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264677
求助须知:如何正确求助?哪些是违规求助? 2904671
关于积分的说明 8331143
捐赠科研通 2574954
什么是DOI,文献DOI怎么找? 1399601
科研通“疑难数据库(出版商)”最低求助积分说明 654521
邀请新用户注册赠送积分活动 633205