Matrix Factorization-Based Dimensionality Reduction Algorithms─A Comparative Study on Spectroscopic Profiling Data

降维 主成分分析 算法 维数之咒 独立成分分析 非负矩阵分解 成对比较 矩阵分解 计算机科学 随机投影 模式识别(心理学) 人工智能 特征向量 物理 量子力学
作者
Yinsheng Zhang,Lu Jin,Fei Guo,Xiaofeng Ni,Yaju Zhao,Ying Cheng,Haiyan Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (39): 13385-13395
标识
DOI:10.1021/acs.analchem.2c01922
摘要

Spectroscopic profiling data used in analytical chemistry can be very high-dimensional. Dimensionality reduction (DR) is an effective way to handle the potential "curse of dimensionality" problem. Among the existing DR algorithms, many can be categorized as a matrix factorization (MF) problem, which decomposes the original data matrix X into the product of a low-dimensional matrix W and a dictionary matrix H. First, this paper provides a theoretical reformulation of relevant DR algorithms under a unified MF perspective, including PCA (principal component analysis), NMF (non-negative matrix factorization), LAE (linear autoencoder), RP (random projection), SRP (sparse random projection), VQ (vector quantization), AA (archetypical analysis), and ICA (independent component analysis). From this perspective, an open-sourced toolkit has been developed to integrate all of the above algorithms with a unified API. Second, we made a comparative study on MF-based DR algorithms. In a case study of TOF (time-of-flight) mass spectra, the eight algorithms extracted three components from the original 27,619 features. The results are compared by a set of DR quality metrics, e.g., reconstruction error, pairwise distance/ranking property, computational cost, local and global structure preservations, etc. Finally, based on the case study result, we summarized guidelines for DR algorithm selection. (1) For reconstruction quality, choose ICA. In the case study, ICA, PCA, and NMF have high reconstruction qualities (reconstruction error < 2%), ICA being the best. (2) To keep the pairwise topological structure, choose PCA. PCA best preserves the pairwise distance/ranking property. (3) For edge computing and IoT scenarios, choose RP or SRP if reconstruction is not required and the JL-lemma condition is met. The RP family has the best computational performance in the experiment, almost 10-100 times faster than its peers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chinning完成签到,获得积分10
1秒前
Mon_zh发布了新的文献求助20
1秒前
1秒前
漂亮送终完成签到,获得积分10
1秒前
朴素篮球发布了新的文献求助10
2秒前
天才完成签到 ,获得积分10
2秒前
不喝可乐发布了新的文献求助10
2秒前
3秒前
皮尤尤发布了新的文献求助10
3秒前
4秒前
道中道完成签到,获得积分10
5秒前
5秒前
知之然完成签到,获得积分10
5秒前
研友_n2QP2L完成签到,获得积分10
5秒前
Lucas应助安静听白采纳,获得10
5秒前
CC发布了新的文献求助10
5秒前
星辰大海应助系统提示采纳,获得10
6秒前
6秒前
sss完成签到,获得积分10
6秒前
6秒前
板凳完成签到,获得积分10
7秒前
单纯访枫发布了新的文献求助30
7秒前
bin0920发布了新的文献求助10
7秒前
aaaaaa完成签到,获得积分10
8秒前
tangsuyun完成签到,获得积分20
8秒前
MADKAI发布了新的文献求助50
8秒前
大方小白完成签到,获得积分10
8秒前
xiaokezhang发布了新的文献求助10
8秒前
8秒前
zhenzhen发布了新的文献求助10
9秒前
9秒前
hz_sz完成签到,获得积分10
10秒前
10秒前
空白完成签到,获得积分10
10秒前
所所应助合适苗条采纳,获得10
10秒前
专注易绿完成签到,获得积分10
11秒前
Anne应助吱嗷赵采纳,获得10
11秒前
xin应助666采纳,获得20
12秒前
YY发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678