Matrix Factorization-Based Dimensionality Reduction Algorithms─A Comparative Study on Spectroscopic Profiling Data

降维 主成分分析 算法 维数之咒 独立成分分析 非负矩阵分解 成对比较 矩阵分解 计算机科学 随机投影 模式识别(心理学) 人工智能 特征向量 物理 量子力学
作者
Yinsheng Zhang,Lu Jin,Fei Guo,Xiaofeng Ni,Yaju Zhao,Ying Cheng,Haiyan Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (39): 13385-13395
标识
DOI:10.1021/acs.analchem.2c01922
摘要

Spectroscopic profiling data used in analytical chemistry can be very high-dimensional. Dimensionality reduction (DR) is an effective way to handle the potential "curse of dimensionality" problem. Among the existing DR algorithms, many can be categorized as a matrix factorization (MF) problem, which decomposes the original data matrix X into the product of a low-dimensional matrix W and a dictionary matrix H. First, this paper provides a theoretical reformulation of relevant DR algorithms under a unified MF perspective, including PCA (principal component analysis), NMF (non-negative matrix factorization), LAE (linear autoencoder), RP (random projection), SRP (sparse random projection), VQ (vector quantization), AA (archetypical analysis), and ICA (independent component analysis). From this perspective, an open-sourced toolkit has been developed to integrate all of the above algorithms with a unified API. Second, we made a comparative study on MF-based DR algorithms. In a case study of TOF (time-of-flight) mass spectra, the eight algorithms extracted three components from the original 27,619 features. The results are compared by a set of DR quality metrics, e.g., reconstruction error, pairwise distance/ranking property, computational cost, local and global structure preservations, etc. Finally, based on the case study result, we summarized guidelines for DR algorithm selection. (1) For reconstruction quality, choose ICA. In the case study, ICA, PCA, and NMF have high reconstruction qualities (reconstruction error < 2%), ICA being the best. (2) To keep the pairwise topological structure, choose PCA. PCA best preserves the pairwise distance/ranking property. (3) For edge computing and IoT scenarios, choose RP or SRP if reconstruction is not required and the JL-lemma condition is met. The RP family has the best computational performance in the experiment, almost 10-100 times faster than its peers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TheSail发布了新的文献求助10
刚刚
刚刚
pcr163应助hetao286采纳,获得100
刚刚
1秒前
薛人英完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
vv的平行宇宙完成签到,获得积分10
3秒前
机密塔完成签到,获得积分10
3秒前
曾小莹完成签到,获得积分10
3秒前
3秒前
4秒前
hua完成签到,获得积分10
4秒前
斯文冷亦完成签到 ,获得积分10
5秒前
努力退休小博士完成签到 ,获得积分10
5秒前
popo完成签到,获得积分10
5秒前
changyongcheng完成签到 ,获得积分10
5秒前
hhhhhhan616完成签到,获得积分10
6秒前
Jj发布了新的文献求助10
6秒前
6秒前
一头小眠羊完成签到,获得积分10
7秒前
7秒前
轻松绮兰发布了新的文献求助10
7秒前
娇娇完成签到,获得积分10
7秒前
8秒前
su发布了新的文献求助10
8秒前
啵妞完成签到 ,获得积分10
8秒前
54489完成签到,获得积分10
9秒前
鲨鱼辣椒完成签到,获得积分10
9秒前
千空发布了新的文献求助10
9秒前
从别后忆相逢完成签到 ,获得积分10
10秒前
SYLH应助xzy998采纳,获得20
10秒前
afar完成签到 ,获得积分10
11秒前
王思鲁完成签到,获得积分10
11秒前
Maxpan完成签到,获得积分10
11秒前
Ddddddd关注了科研通微信公众号
11秒前
12秒前
12秒前
A0发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044