Matrix Factorization-Based Dimensionality Reduction Algorithms─A Comparative Study on Spectroscopic Profiling Data

降维 主成分分析 算法 维数之咒 独立成分分析 非负矩阵分解 成对比较 矩阵分解 计算机科学 随机投影 模式识别(心理学) 人工智能 特征向量 物理 量子力学
作者
Yinsheng Zhang,Lu Jin,Fei Guo,Xiaofeng Ni,Yaju Zhao,Ying Cheng,Haiyan Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (39): 13385-13395
标识
DOI:10.1021/acs.analchem.2c01922
摘要

Spectroscopic profiling data used in analytical chemistry can be very high-dimensional. Dimensionality reduction (DR) is an effective way to handle the potential "curse of dimensionality" problem. Among the existing DR algorithms, many can be categorized as a matrix factorization (MF) problem, which decomposes the original data matrix X into the product of a low-dimensional matrix W and a dictionary matrix H. First, this paper provides a theoretical reformulation of relevant DR algorithms under a unified MF perspective, including PCA (principal component analysis), NMF (non-negative matrix factorization), LAE (linear autoencoder), RP (random projection), SRP (sparse random projection), VQ (vector quantization), AA (archetypical analysis), and ICA (independent component analysis). From this perspective, an open-sourced toolkit has been developed to integrate all of the above algorithms with a unified API. Second, we made a comparative study on MF-based DR algorithms. In a case study of TOF (time-of-flight) mass spectra, the eight algorithms extracted three components from the original 27,619 features. The results are compared by a set of DR quality metrics, e.g., reconstruction error, pairwise distance/ranking property, computational cost, local and global structure preservations, etc. Finally, based on the case study result, we summarized guidelines for DR algorithm selection. (1) For reconstruction quality, choose ICA. In the case study, ICA, PCA, and NMF have high reconstruction qualities (reconstruction error < 2%), ICA being the best. (2) To keep the pairwise topological structure, choose PCA. PCA best preserves the pairwise distance/ranking property. (3) For edge computing and IoT scenarios, choose RP or SRP if reconstruction is not required and the JL-lemma condition is met. The RP family has the best computational performance in the experiment, almost 10-100 times faster than its peers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
礼部尚书完成签到,获得积分10
3秒前
Bubble_C发布了新的文献求助10
4秒前
田様应助顾顾顾昊然采纳,获得10
4秒前
4秒前
田様应助鲁丁丁采纳,获得10
5秒前
白枫发布了新的文献求助10
5秒前
6秒前
冷酷自行车完成签到,获得积分20
7秒前
KQ完成签到,获得积分10
7秒前
蛋卷完成签到,获得积分10
7秒前
Anougme完成签到,获得积分20
7秒前
火焰迷踪发布了新的文献求助10
9秒前
10秒前
yehata发布了新的文献求助10
10秒前
蓝河发布了新的文献求助10
13秒前
13秒前
南寻完成签到,获得积分10
13秒前
淡然绾绾发布了新的文献求助10
15秒前
wang完成签到 ,获得积分10
16秒前
20010发布了新的文献求助10
17秒前
一叶知阿华田完成签到,获得积分20
17秒前
18秒前
ding应助无语的如天采纳,获得10
19秒前
俊逸香岚完成签到,获得积分10
19秒前
20秒前
Shine完成签到 ,获得积分10
20秒前
白木发布了新的文献求助10
21秒前
李健应助20010采纳,获得10
22秒前
22秒前
小蘑菇应助火焰迷踪采纳,获得10
22秒前
kassidy完成签到,获得积分10
23秒前
希望天下0贩的0应助ZZZ采纳,获得10
23秒前
坦率灵槐应助周星星采纳,获得10
24秒前
yehata完成签到,获得积分10
24秒前
fendy应助星辰采纳,获得30
24秒前
24秒前
24秒前
24秒前
鲁丁丁发布了新的文献求助10
27秒前
Shellbeaze发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309724
求助须知:如何正确求助?哪些是违规求助? 4454247
关于积分的说明 13859535
捐赠科研通 4342205
什么是DOI,文献DOI怎么找? 2384385
邀请新用户注册赠送积分活动 1378844
关于科研通互助平台的介绍 1347021