Matrix Factorization-Based Dimensionality Reduction Algorithms─A Comparative Study on Spectroscopic Profiling Data

降维 主成分分析 算法 维数之咒 独立成分分析 非负矩阵分解 成对比较 矩阵分解 计算机科学 随机投影 模式识别(心理学) 人工智能 特征向量 量子力学 物理
作者
Yinsheng Zhang,Lu Jin,Fei Guo,Xiaofeng Ni,Yaju Zhao,Ying Cheng,Haiyan Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (39): 13385-13395
标识
DOI:10.1021/acs.analchem.2c01922
摘要

Spectroscopic profiling data used in analytical chemistry can be very high-dimensional. Dimensionality reduction (DR) is an effective way to handle the potential "curse of dimensionality" problem. Among the existing DR algorithms, many can be categorized as a matrix factorization (MF) problem, which decomposes the original data matrix X into the product of a low-dimensional matrix W and a dictionary matrix H. First, this paper provides a theoretical reformulation of relevant DR algorithms under a unified MF perspective, including PCA (principal component analysis), NMF (non-negative matrix factorization), LAE (linear autoencoder), RP (random projection), SRP (sparse random projection), VQ (vector quantization), AA (archetypical analysis), and ICA (independent component analysis). From this perspective, an open-sourced toolkit has been developed to integrate all of the above algorithms with a unified API. Second, we made a comparative study on MF-based DR algorithms. In a case study of TOF (time-of-flight) mass spectra, the eight algorithms extracted three components from the original 27,619 features. The results are compared by a set of DR quality metrics, e.g., reconstruction error, pairwise distance/ranking property, computational cost, local and global structure preservations, etc. Finally, based on the case study result, we summarized guidelines for DR algorithm selection. (1) For reconstruction quality, choose ICA. In the case study, ICA, PCA, and NMF have high reconstruction qualities (reconstruction error < 2%), ICA being the best. (2) To keep the pairwise topological structure, choose PCA. PCA best preserves the pairwise distance/ranking property. (3) For edge computing and IoT scenarios, choose RP or SRP if reconstruction is not required and the JL-lemma condition is met. The RP family has the best computational performance in the experiment, almost 10-100 times faster than its peers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
CNAxiaozhu7应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
嘿嘿应助科研通管家采纳,获得20
1秒前
怡然嚣完成签到 ,获得积分10
1秒前
1秒前
小蘑菇应助zt采纳,获得10
2秒前
上官若男应助wjf采纳,获得10
2秒前
2秒前
zard发布了新的社区帖子
3秒前
曲初雪发布了新的文献求助30
3秒前
zd完成签到,获得积分10
4秒前
4秒前
火箭Lucky发布了新的文献求助10
5秒前
小爽发布了新的文献求助10
6秒前
YQP完成签到 ,获得积分10
6秒前
乐乐应助怡然缘分采纳,获得10
7秒前
vv完成签到,获得积分10
7秒前
了了发布了新的文献求助10
8秒前
完美麦片完成签到,获得积分10
9秒前
领导范儿应助羊咩咩采纳,获得10
9秒前
yxy发布了新的文献求助30
10秒前
珍珠奶茶发布了新的文献求助10
10秒前
大地上的鱼完成签到,获得积分10
10秒前
易点邦应助wangfaqing942采纳,获得40
11秒前
善学以致用应助马dc采纳,获得10
11秒前
QW111完成签到,获得积分10
11秒前
11秒前
zhonglv7应助bobo采纳,获得10
13秒前
zhonglv7应助bobo采纳,获得10
13秒前
zhonglv7应助bobo采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082