亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Matrix Factorization-Based Dimensionality Reduction Algorithms─A Comparative Study on Spectroscopic Profiling Data

降维 主成分分析 算法 维数之咒 独立成分分析 非负矩阵分解 成对比较 矩阵分解 计算机科学 随机投影 模式识别(心理学) 人工智能 特征向量 物理 量子力学
作者
Yinsheng Zhang,Lu Jin,Fei Guo,Xiaofeng Ni,Yaju Zhao,Ying Cheng,Haiyan Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (39): 13385-13395
标识
DOI:10.1021/acs.analchem.2c01922
摘要

Spectroscopic profiling data used in analytical chemistry can be very high-dimensional. Dimensionality reduction (DR) is an effective way to handle the potential "curse of dimensionality" problem. Among the existing DR algorithms, many can be categorized as a matrix factorization (MF) problem, which decomposes the original data matrix X into the product of a low-dimensional matrix W and a dictionary matrix H. First, this paper provides a theoretical reformulation of relevant DR algorithms under a unified MF perspective, including PCA (principal component analysis), NMF (non-negative matrix factorization), LAE (linear autoencoder), RP (random projection), SRP (sparse random projection), VQ (vector quantization), AA (archetypical analysis), and ICA (independent component analysis). From this perspective, an open-sourced toolkit has been developed to integrate all of the above algorithms with a unified API. Second, we made a comparative study on MF-based DR algorithms. In a case study of TOF (time-of-flight) mass spectra, the eight algorithms extracted three components from the original 27,619 features. The results are compared by a set of DR quality metrics, e.g., reconstruction error, pairwise distance/ranking property, computational cost, local and global structure preservations, etc. Finally, based on the case study result, we summarized guidelines for DR algorithm selection. (1) For reconstruction quality, choose ICA. In the case study, ICA, PCA, and NMF have high reconstruction qualities (reconstruction error < 2%), ICA being the best. (2) To keep the pairwise topological structure, choose PCA. PCA best preserves the pairwise distance/ranking property. (3) For edge computing and IoT scenarios, choose RP or SRP if reconstruction is not required and the JL-lemma condition is met. The RP family has the best computational performance in the experiment, almost 10-100 times faster than its peers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zilt1109发布了新的文献求助10
4秒前
ajing完成签到,获得积分10
9秒前
哲别发布了新的文献求助10
9秒前
15秒前
善学以致用应助哲别采纳,获得10
16秒前
liuye0202完成签到,获得积分10
19秒前
20秒前
懒回顾发布了新的文献求助10
27秒前
38秒前
yuyiyi发布了新的文献求助10
40秒前
49秒前
54秒前
叶子完成签到 ,获得积分10
1分钟前
Willow完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
一只发布了新的文献求助10
1分钟前
1分钟前
欣欣子完成签到,获得积分10
1分钟前
yuyiyi完成签到,获得积分10
1分钟前
sunstar完成签到,获得积分20
1分钟前
1分钟前
susu_完成签到,获得积分10
1分钟前
yxl完成签到,获得积分10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
1分钟前
在水一方应助搞什么科研采纳,获得10
1分钟前
lsc完成签到,获得积分10
1分钟前
隐形曼青应助白华苍松采纳,获得10
1分钟前
小fei完成签到,获得积分10
2分钟前
2分钟前
麻辣薯条完成签到,获得积分10
2分钟前
时尚身影完成签到,获得积分10
2分钟前
an慧儿发布了新的文献求助10
2分钟前
2分钟前
流苏完成签到,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509496
求助须知:如何正确求助?哪些是违规求助? 4604404
关于积分的说明 14489722
捐赠科研通 4539189
什么是DOI,文献DOI怎么找? 2487356
邀请新用户注册赠送积分活动 1469804
关于科研通互助平台的介绍 1442032