In this study, manganese-based multiply hierarchical chiral supraparticles (SPs), with an anisotropy factor (g-factor) of 0.102 and circular dichroism (CD) intensity of 260 mdeg at 530 nm, are successfully synthesized with polar-solvent-mediated strategies. Notably, the g-factor of the SPs is further enhanced to 0.121 by the addition of an external chiral solvent, generating a chiral biased environment, which increases their CD intensity to 320 mdeg at 500 nm. The mechanism underlying the different chirality is proposed to be a difference in the angle of tilt of ±33° between the two enantiomers of the chiral SPs, which involves a difference of ±7° between the orientation of individual nanoplatelets. Chiral solvents induce the angle between adjacent nanoplatelets to get smaller than the original structure that leads to their higher anisotropic value. These findings potentially provide a practical method for the construction of complex chiral superstructures and the regulation of chiroptical activity.