计算机科学
人工智能
卷积神经网络
分割
模式识别(心理学)
超图
分类器(UML)
视网膜
光学(聚焦)
眼科
数学
医学
物理
离散数学
光学
作者
Pauline Githinji,Lei Shao,Lin An,Hao Zhang,Fang Li,Dong Li,Lan Ma,Yuhan Dong,Yongbing Zhang,Wenbin Wei,Peiwu Qin
标识
DOI:10.1007/978-3-031-16434-7_53
摘要
Vision-threatening pathological myopia presents several lesions affecting various retinal anatomical structures. Detection approaches, however, either focus on one anatomical feature or are not intentional. This study uses hypergraph learning to modulate delineated retinal anatomical features from fundus images and capitalize on hidden associations between them. Experiments are conducted to assess prediction performance when targeting a particular anatomical trait versus using a mixture of select anatomical features, and in comparison to a ResNet34-based convolutional neural network classifier. Results indicate better prediction with hypergraph learning on a mix of the delineated features (F1 score $$89.75\%$$ , AUC score $$95.39\%$$ ). A choroid tessellation segmentation method is also included.
科研通智能强力驱动
Strongly Powered by AbleSci AI