抛光
洗脱
下游加工
色谱法
化学
工业与生产工程
单体
过程(计算)
材料科学
计算机科学
聚合物
机械工程
工程类
复合材料
有机化学
操作系统
作者
Serene W. Chen,Kong Meng Hoi,Farouq Bin Mahfut,Yuansheng Yang,Wei Zhang
标识
DOI:10.1186/s40643-022-00590-8
摘要
Abstract Bispecific antibodies (bsAbs), though possessing great therapeutic potential, are extremely challenging to obtain at high purity within a limited number of scalable downstream processing steps. Complementary to Protein A chromatography, polishing strategies play a critical role at removing the remaining high molecular weight (HMW) and low molecular weight (LMW) species, as well as host cell proteins (HCP) in order to achieve a final product of high purity. Here, we demonstrate using two knob-into-hole (KiH) bsAb constructs that two flow-through polishing steps utilising Capto Butyl ImpRes and Capto adhere resins, performed after an optimal Protein A affinity chromatography step can further reduce the HCP by 17- to 35-fold as well as HMW and LMW species with respect to monomer by ~ 4–6% and ~ 1%, respectively, to meet therapeutical requirement at 30–60 mg/mL-resin (R) load. This complete flow-through polishing strategy, guided by Design of Experiments (DoE), eliminates undesirable aggregation problems associated with the higher aggregation propensity of scFv containing bsAbs that may occur in the bind and elute mode, offering an improved ease of overall process operation without additional elution buffer preparation and consumption, thus aligning well with process intensification efforts. Overall, we demonstrate that through the employment of (1) Protein A chromatography step and (2) flow-through polishing steps, a final product containing < 1% HMW species, < 1% LMW species and < 100 ppm HCP can be obtained with an overall process recovery of 56–87%. Graphical Abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI