Elasto-geometrical calibration of a hybrid mobile robot considering gravity deformation and stiffness parameter errors

刚度 校准 变形(气象学) 计算机科学 机器人 移动机器人 大地测量学 地质学 物理 人工智能 结构工程 工程类 海洋学 量子力学
作者
Jiakai Chen,Fugui Xie,Xin-Jun Liu,Zenghui Chong
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:79: 102437-102437 被引量:12
标识
DOI:10.1016/j.rcim.2022.102437
摘要

Hybrid mobile robots, which combine the advantages of serial and parallel robots and have the ability to realize processing in situ, have considerable application potential in the field of processing and manufacturing. In this paper, a hybrid mobile robot used for wind turbine blade polishing is presented. The robot combines an automated guided vehicle, a 2-DoF robotic arm, and a 3-RCU parallel module. To improve the accuracy, investigating the elasto-geometrical calibration of the robot is necessary. Considering that the 3-RCU parallel module has weak stiffness along the gravitational direction, the stiffness model was established to estimate the deformation caused by the gravity of the mobile platform, ball screws, and motors. Subsequently, a rigid-flexible coupling error model considering structural and stiffness parameter errors is established. Based on these, a parameter identification method for the simultaneous identification of structural and stiffness parameter errors is proposed herein. For the 2-DoF robotic arm with parallelogram mechanisms, an intuitive error model considering the posture error caused by the parallelogram mechanism errors is established. The regularized nonlinear least squares method was adopted for parameter identification. Thereafter, a compensation strategy for the hybrid mobile robot that comprehensively considers the pose errors of the 3-RCU parallel module and 2-DoF robotic arm is proposed. Finally, a verification experiment was performed on the prototype, and the results indicated that after elasto-geometrical calibration, the maximum/mean of the position and posture errors of the hybrid mobile robot decreased from 3.738 mm/2.573 mm to 0.109 mm/0.063 mm and 0.236°/0.179° to 0.030°/0.013°, respectively. Owing to the decrease in the robot pose errors, the quality of the polished surface was more uniform. The range and standard deviation of roughness distribution of the polished surface were reduced from 0.595 μm and 0.248 μm to 0.397 μm and 0.127 μm. The methods proposed herein have reference significance for elasto-geometrical calibration of other parallel or hybrid robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
uiass发布了新的文献求助10
1秒前
朴实香露发布了新的文献求助10
6秒前
优雅海雪发布了新的文献求助10
7秒前
布丁完成签到 ,获得积分10
8秒前
舒适的晓旋完成签到,获得积分10
8秒前
10秒前
在水一方应助小斌采纳,获得10
12秒前
xxw完成签到,获得积分10
12秒前
血橙发布了新的文献求助30
13秒前
zhouzhou发布了新的文献求助10
14秒前
ggbond完成签到,获得积分10
15秒前
33完成签到,获得积分20
17秒前
独特的易形完成签到,获得积分10
17秒前
一一应助昵称采纳,获得30
18秒前
果子应助yuchen12a采纳,获得10
19秒前
ads发布了新的文献求助10
20秒前
Henry发布了新的文献求助20
20秒前
情怀应助小贾采纳,获得10
21秒前
脑洞疼应助合适的落落采纳,获得10
21秒前
华仔应助杪123采纳,获得10
21秒前
shmorby完成签到 ,获得积分10
23秒前
33发布了新的文献求助10
23秒前
科研通AI5应助yy采纳,获得10
26秒前
zyl完成签到,获得积分10
27秒前
28秒前
步念完成签到,获得积分20
30秒前
31秒前
31秒前
Lucas应助娟不卷采纳,获得10
31秒前
33秒前
mingpu应助yuchen12a采纳,获得10
33秒前
34秒前
TIAN完成签到,获得积分10
35秒前
杪123发布了新的文献求助10
36秒前
Cora发布了新的文献求助10
37秒前
lxiaok完成签到,获得积分10
39秒前
yy发布了新的文献求助10
39秒前
40秒前
SciGPT应助wangdong采纳,获得10
43秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701555
求助须知:如何正确求助?哪些是违规求助? 3251755
关于积分的说明 9876024
捐赠科研通 2963720
什么是DOI,文献DOI怎么找? 1625252
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742623