亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task Learning-Driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification

计算机科学 人工智能 正规化(语言学) 模式识别(心理学) 特征(语言学) 上下文图像分类 分级(工程) 深度学习 机器学习
作者
Jiayuan Zhu,Shujun Wang,Jinzheng He,Carola-Bibiane Schönlieb,Lequan Yu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 110-120
标识
DOI:10.1007/978-3-031-17266-3_11
摘要

AbstractAutomatic 3D medical image classification,e.g., brain tumor grading from 3D MRI images, is important in clinical practice. However, direct tumor grading from 3D MRI images is quite challenging due to the unknown tumor location and relatively small size of abnormal regions. One key point to deal with this problem is to learn more representative and distinctive features. Contrastive learning has shown its effectiveness with representative feature learning in both natural and medical image analysis tasks. However, for 3D medical images, where slices are continuous, simply performing contrastive learning at the volume-level may lead to inferior performance due to the ineffective use of spatial information and distinctive knowledge. To overcome this limitation, we present a novel contrastive learning framework from synergistic 3D and 2D perspectives for 3D medical image classification within a multi-task learning paradigm. We formulate the 3D medical image classification as a Multiple Instance Learning (MIL) problem and introduce an attention-based MIL module to integrate the 2D instance features of each slice into the 3D feature for classification. Then, we simultaneously consider volume-based and slice-based contrastive learning as the auxiliary tasks, aiming to enhance the global distinctive knowledge learning and explore the correspondence relationship among different slice clusters. We conducted experiments on two 3D MRI image classification datasets for brain tumor grading. The results demonstrate that the proposed volume- and slice-level contrastive learning scheme largely boost the main classification task by implicit network regularization during the model optimization, leading to a \(10.5\%\) average AUC improvement compared with the basic model on two datasets.KeywordsContrastive learningMulti-task learning3D MRI image classificationBrain tumor grading
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简单的皮皮虾完成签到 ,获得积分10
30秒前
30秒前
月亮门完成签到 ,获得积分10
36秒前
baozi发布了新的文献求助10
37秒前
1分钟前
1分钟前
1分钟前
Akim应助安详宛筠采纳,获得10
2分钟前
2分钟前
安详宛筠发布了新的文献求助10
2分钟前
原子格致完成签到 ,获得积分10
2分钟前
安详宛筠完成签到,获得积分10
2分钟前
2分钟前
Aimee完成签到 ,获得积分10
2分钟前
qingshu发布了新的文献求助10
2分钟前
qingshu完成签到,获得积分10
2分钟前
3分钟前
1Yer6完成签到 ,获得积分10
3分钟前
英喆完成签到 ,获得积分10
3分钟前
ycool完成签到 ,获得积分10
3分钟前
伯赏芷烟完成签到,获得积分10
5分钟前
睡觉补充能量完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
搜集达人应助Dr_WongRunFong采纳,获得10
7分钟前
Esperanza完成签到,获得积分10
7分钟前
Dr_WongRunFong完成签到,获得积分10
8分钟前
Wei发布了新的文献求助10
8分钟前
8分钟前
kkkk发布了新的文献求助10
8分钟前
8分钟前
领导范儿应助小小果妈采纳,获得10
9分钟前
大模型应助dkswy采纳,获得10
9分钟前
9分钟前
9分钟前
好好学习完成签到,获得积分20
9分钟前
9分钟前
好好学习发布了新的文献求助10
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211034
求助须知:如何正确求助?哪些是违规求助? 4387624
关于积分的说明 13663026
捐赠科研通 4247643
什么是DOI,文献DOI怎么找? 2330421
邀请新用户注册赠送积分活动 1328191
关于科研通互助平台的介绍 1281017