Multi-task Learning-Driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification

计算机科学 人工智能 正规化(语言学) 模式识别(心理学) 特征(语言学) 上下文图像分类 分级(工程) 深度学习 机器学习
作者
Jiayuan Zhu,Shujun Wang,Jinzheng He,Carola-Bibiane Schönlieb,Lequan Yu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 110-120
标识
DOI:10.1007/978-3-031-17266-3_11
摘要

AbstractAutomatic 3D medical image classification,e.g., brain tumor grading from 3D MRI images, is important in clinical practice. However, direct tumor grading from 3D MRI images is quite challenging due to the unknown tumor location and relatively small size of abnormal regions. One key point to deal with this problem is to learn more representative and distinctive features. Contrastive learning has shown its effectiveness with representative feature learning in both natural and medical image analysis tasks. However, for 3D medical images, where slices are continuous, simply performing contrastive learning at the volume-level may lead to inferior performance due to the ineffective use of spatial information and distinctive knowledge. To overcome this limitation, we present a novel contrastive learning framework from synergistic 3D and 2D perspectives for 3D medical image classification within a multi-task learning paradigm. We formulate the 3D medical image classification as a Multiple Instance Learning (MIL) problem and introduce an attention-based MIL module to integrate the 2D instance features of each slice into the 3D feature for classification. Then, we simultaneously consider volume-based and slice-based contrastive learning as the auxiliary tasks, aiming to enhance the global distinctive knowledge learning and explore the correspondence relationship among different slice clusters. We conducted experiments on two 3D MRI image classification datasets for brain tumor grading. The results demonstrate that the proposed volume- and slice-level contrastive learning scheme largely boost the main classification task by implicit network regularization during the model optimization, leading to a \(10.5\%\) average AUC improvement compared with the basic model on two datasets.KeywordsContrastive learningMulti-task learning3D MRI image classificationBrain tumor grading
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睡到人间煮饭时完成签到,获得积分10
1秒前
纳纳椰完成签到,获得积分10
1秒前
1秒前
zzz发布了新的文献求助10
2秒前
3秒前
张冰倩发布了新的文献求助30
3秒前
zzer完成签到,获得积分10
3秒前
3秒前
3秒前
szmsnail完成签到,获得积分10
4秒前
852应助Joannice采纳,获得10
4秒前
IMkily完成签到,获得积分10
4秒前
菠萝炒饭完成签到,获得积分10
4秒前
优秀的念露完成签到,获得积分10
4秒前
哈哈完成签到,获得积分10
4秒前
冷漠的布丁完成签到,获得积分10
5秒前
Yin完成签到,获得积分10
5秒前
5秒前
5秒前
面包牛奶会有的完成签到,获得积分10
5秒前
5秒前
三三四完成签到,获得积分10
6秒前
yulong完成签到,获得积分10
6秒前
7秒前
7秒前
lfzw完成签到,获得积分10
7秒前
A阿澍完成签到,获得积分10
8秒前
馒头完成签到,获得积分10
8秒前
9秒前
Zzzhuan发布了新的文献求助10
9秒前
脑残骑士老张完成签到,获得积分10
9秒前
oyfff完成签到 ,获得积分10
10秒前
诡计多端发布了新的文献求助10
10秒前
大壮完成签到,获得积分10
10秒前
乌漆嘛黑完成签到,获得积分10
10秒前
权志龙完成签到,获得积分10
10秒前
哈哈是你发布了新的文献求助10
10秒前
秘小先儿完成签到,获得积分10
10秒前
ohnk发布了新的文献求助10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478