Multi-task Learning-Driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification

计算机科学 人工智能 正规化(语言学) 模式识别(心理学) 特征(语言学) 上下文图像分类 分级(工程) 深度学习 机器学习
作者
Jiayuan Zhu,Shujun Wang,Jinzheng He,Carola-Bibiane Schönlieb,Lequan Yu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 110-120
标识
DOI:10.1007/978-3-031-17266-3_11
摘要

AbstractAutomatic 3D medical image classification,e.g., brain tumor grading from 3D MRI images, is important in clinical practice. However, direct tumor grading from 3D MRI images is quite challenging due to the unknown tumor location and relatively small size of abnormal regions. One key point to deal with this problem is to learn more representative and distinctive features. Contrastive learning has shown its effectiveness with representative feature learning in both natural and medical image analysis tasks. However, for 3D medical images, where slices are continuous, simply performing contrastive learning at the volume-level may lead to inferior performance due to the ineffective use of spatial information and distinctive knowledge. To overcome this limitation, we present a novel contrastive learning framework from synergistic 3D and 2D perspectives for 3D medical image classification within a multi-task learning paradigm. We formulate the 3D medical image classification as a Multiple Instance Learning (MIL) problem and introduce an attention-based MIL module to integrate the 2D instance features of each slice into the 3D feature for classification. Then, we simultaneously consider volume-based and slice-based contrastive learning as the auxiliary tasks, aiming to enhance the global distinctive knowledge learning and explore the correspondence relationship among different slice clusters. We conducted experiments on two 3D MRI image classification datasets for brain tumor grading. The results demonstrate that the proposed volume- and slice-level contrastive learning scheme largely boost the main classification task by implicit network regularization during the model optimization, leading to a \(10.5\%\) average AUC improvement compared with the basic model on two datasets.KeywordsContrastive learningMulti-task learning3D MRI image classificationBrain tumor grading
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通~发布了新的文献求助30
刚刚
淡定的思松应助Ryan采纳,获得10
刚刚
李来仪发布了新的文献求助10
刚刚
1秒前
封小封完成签到,获得积分10
1秒前
面面完成签到,获得积分20
1秒前
笑点低梦露完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
DD完成签到,获得积分10
3秒前
今非完成签到,获得积分10
3秒前
研友_VZG7GZ应助LiShin采纳,获得10
3秒前
wangye完成签到,获得积分10
4秒前
糜厉完成签到,获得积分10
5秒前
5秒前
希望天下0贩的0应助谢安采纳,获得10
5秒前
6秒前
6秒前
wangye发布了新的文献求助10
6秒前
拼搏起眸完成签到 ,获得积分20
7秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
小敦关注了科研通微信公众号
8秒前
最优解完成签到,获得积分10
8秒前
海棠听风完成签到,获得积分10
8秒前
WUYANG完成签到,获得积分10
9秒前
情怀应助javalin采纳,获得10
9秒前
10秒前
10秒前
思有完成签到 ,获得积分10
10秒前
德德发布了新的文献求助10
10秒前
无花果应助dpp采纳,获得10
10秒前
NexusExplorer应助YYY采纳,获得10
10秒前
11秒前
科研通AI2S应助心房子采纳,获得10
11秒前
jiao完成签到,获得积分10
11秒前
12秒前
12秒前
搜集达人应助哈哈大笑采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794