Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scinewbee发布了新的文献求助10
1秒前
LHZ完成签到,获得积分10
1秒前
加缪发布了新的文献求助10
2秒前
2秒前
子车茗应助dcc采纳,获得20
3秒前
4秒前
黑色的白鲸完成签到,获得积分10
7秒前
Fighting发布了新的文献求助10
7秒前
CIOOICO1发布了新的文献求助10
8秒前
ling完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
andre20完成签到 ,获得积分10
12秒前
chenmeimei2012完成签到 ,获得积分10
13秒前
dynamoo发布了新的文献求助180
14秒前
勤奋梨愁发布了新的文献求助10
16秒前
龍焱发布了新的文献求助10
16秒前
ku_zhang发布了新的文献求助10
17秒前
18秒前
兰兰发布了新的文献求助10
20秒前
小鱼干完成签到,获得积分10
20秒前
21秒前
NexusExplorer应助柠溪采纳,获得10
21秒前
稻草人发布了新的文献求助10
22秒前
小二郎应助小白采纳,获得10
22秒前
23秒前
ku_zhang完成签到,获得积分10
23秒前
25秒前
26秒前
26秒前
王洁完成签到 ,获得积分10
26秒前
27秒前
攸宁完成签到,获得积分10
29秒前
30秒前
31秒前
传奇3应助优雅访波采纳,获得10
31秒前
花生完成签到,获得积分10
32秒前
33秒前
automan发布了新的文献求助20
34秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215115
求助须知:如何正确求助?哪些是违规求助? 4390318
关于积分的说明 13669481
捐赠科研通 4251938
什么是DOI,文献DOI怎么找? 2332948
邀请新用户注册赠送积分活动 1330569
关于科研通互助平台的介绍 1284332