Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
2秒前
2秒前
在水一方应助默默善愁采纳,获得10
2秒前
止咳宝完成签到,获得积分10
3秒前
Zephyr完成签到,获得积分10
5秒前
FancyShi完成签到,获得积分10
5秒前
科目三应助hyw采纳,获得10
5秒前
6秒前
6秒前
FashionBoy应助vvlydia采纳,获得10
7秒前
可爱的函函应助九卫采纳,获得10
7秒前
嗨是完成签到,获得积分10
8秒前
我我我我我不一样烟火完成签到,获得积分10
8秒前
渔夫完成签到,获得积分10
8秒前
酷波er应助吴洲凤采纳,获得10
9秒前
9秒前
9秒前
12秒前
邓邓发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
16秒前
hyw发布了新的文献求助10
20秒前
九卫发布了新的文献求助10
21秒前
21秒前
小鱼儿发布了新的文献求助10
21秒前
22秒前
吴洲凤发布了新的文献求助10
25秒前
26秒前
小二郎应助小钱钱采纳,获得10
26秒前
量子星尘发布了新的文献求助30
28秒前
鲸鱼发布了新的文献求助10
28秒前
浮游应助Sissel采纳,获得10
29秒前
bbihk完成签到,获得积分10
29秒前
默默善愁发布了新的文献求助10
30秒前
32秒前
天天快乐应助slin_sjtu采纳,获得10
33秒前
Sea_moon完成签到,获得积分10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4967770
求助须知:如何正确求助?哪些是违规求助? 4225455
关于积分的说明 13159277
捐赠科研通 4012275
什么是DOI,文献DOI怎么找? 2195475
邀请新用户注册赠送积分活动 1208861
关于科研通互助平台的介绍 1122837