Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CodeCraft应助平淡的井采纳,获得30
1秒前
安生完成签到,获得积分10
1秒前
Orange应助热情薯片采纳,获得10
1秒前
椰汁关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
Hipchengi完成签到,获得积分10
2秒前
汉堡包应助淡淡夕阳采纳,获得10
2秒前
迅速的岩发布了新的文献求助10
3秒前
传奇3应助kyhappy_2002采纳,获得10
4秒前
5秒前
虚幻的菲鹰完成签到,获得积分10
5秒前
充电宝应助洁净的元蝶采纳,获得10
5秒前
正直沧海发布了新的文献求助10
6秒前
6秒前
田様应助东方采纳,获得10
6秒前
8秒前
8秒前
8秒前
袁慧凡发布了新的文献求助10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
cc应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
酷波er应助V——V5555采纳,获得10
9秒前
ccm应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
正直沧海完成签到,获得积分20
10秒前
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442461
求助须知:如何正确求助?哪些是违规求助? 4552718
关于积分的说明 14238070
捐赠科研通 4473972
什么是DOI,文献DOI怎么找? 2451801
邀请新用户注册赠送积分活动 1442690
关于科研通互助平台的介绍 1418574