Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助英勇羿采纳,获得30
刚刚
1秒前
满意白卉完成签到 ,获得积分10
2秒前
u9227发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
YXHTCM发布了新的文献求助10
6秒前
455完成签到,获得积分10
7秒前
7秒前
小鱼完成签到 ,获得积分10
10秒前
慕青应助菠萝披萨采纳,获得10
11秒前
九思发布了新的文献求助10
12秒前
林牧完成签到,获得积分10
14秒前
16秒前
大帅哥发布了新的文献求助10
20秒前
大个应助优美的南烟采纳,获得10
20秒前
spzdss发布了新的文献求助150
20秒前
懵懂的曼寒完成签到,获得积分10
24秒前
24秒前
无花果应助u9227采纳,获得10
24秒前
25秒前
黎明发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
浮游应助刘丹丹采纳,获得10
27秒前
Helio发布了新的文献求助10
30秒前
lzl17o8发布了新的文献求助10
30秒前
34秒前
霸气的半烟完成签到,获得积分20
34秒前
fisker完成签到,获得积分10
36秒前
37秒前
fzx完成签到,获得积分10
37秒前
lll发布了新的文献求助10
38秒前
41秒前
41秒前
黎明完成签到,获得积分10
42秒前
fisker发布了新的文献求助10
42秒前
自觉的枕头完成签到,获得积分10
42秒前
43秒前
44秒前
烟花应助大帅哥采纳,获得10
44秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449302
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263669
捐赠科研通 4480533
什么是DOI,文献DOI怎么找? 2454467
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1420986