Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃鱼鱼鱼完成签到,获得积分10
刚刚
1秒前
松桕柏完成签到,获得积分10
1秒前
2秒前
刻苦的三问应助思玉采纳,获得10
2秒前
2秒前
wuti发布了新的文献求助20
2秒前
无花果应助刘天强采纳,获得10
3秒前
bubbull发布了新的文献求助10
3秒前
清樾完成签到 ,获得积分10
3秒前
zhang完成签到,获得积分10
3秒前
驱蚊器发布了新的文献求助30
4秒前
高高发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
ZL张莉发布了新的文献求助30
5秒前
5秒前
丘比特应助积极紫翠采纳,获得10
5秒前
Liu完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
英姑应助研究生采纳,获得10
6秒前
英姑应助全焱采纳,获得10
7秒前
小蘑菇应助CDI和LIB采纳,获得10
7秒前
wanci应助兑现采纳,获得10
7秒前
自由傲晴完成签到 ,获得积分10
8秒前
陶醉西牛发布了新的文献求助10
9秒前
fox发布了新的文献求助10
9秒前
妙旋克里斯完成签到,获得积分10
9秒前
9秒前
纪思奇完成签到 ,获得积分10
10秒前
李朋发布了新的文献求助10
10秒前
谦让白秋完成签到,获得积分10
10秒前
11秒前
11秒前
bubbull完成签到,获得积分10
12秒前
CipherSage应助一群牛采纳,获得10
12秒前
12秒前
Fbin完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403