已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远行客HB发布了新的文献求助10
1秒前
tanhaowen发布了新的文献求助10
1秒前
3秒前
chenjian完成签到,获得积分10
4秒前
迷路的台灯完成签到 ,获得积分10
7秒前
7秒前
852应助Lemon采纳,获得10
9秒前
zzyfsh发布了新的文献求助10
10秒前
pp发布了新的文献求助10
12秒前
有魅力的白玉完成签到 ,获得积分10
14秒前
15秒前
春天的粥完成签到 ,获得积分10
15秒前
TT发布了新的文献求助10
20秒前
vippp完成签到 ,获得积分10
20秒前
称心初之完成签到 ,获得积分10
21秒前
小蝶完成签到 ,获得积分10
21秒前
pp完成签到 ,获得积分10
23秒前
24秒前
寂寞的诗云完成签到,获得积分10
25秒前
在水一方应助xiaoya927217采纳,获得10
26秒前
小蛇玩完成签到,获得积分10
28秒前
暮封发布了新的文献求助10
30秒前
tjnksy完成签到,获得积分10
31秒前
情怀应助HUOZHUANGCHAO采纳,获得10
34秒前
科研通AI6应助哲别采纳,获得10
36秒前
祝佳其完成签到 ,获得积分10
37秒前
暮封完成签到,获得积分10
39秒前
TT完成签到,获得积分10
43秒前
43秒前
情怀应助长情无心采纳,获得10
47秒前
今后应助阿梅梅梅采纳,获得10
47秒前
慕青应助阿梅梅梅采纳,获得10
47秒前
小蘑菇应助喜悦的如娆采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得30
50秒前
田様应助科研通管家采纳,获得10
50秒前
小马甲应助科研通管家采纳,获得10
50秒前
淡淡的妙梦完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511