Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
深情安青应助什么局部云采纳,获得30
刚刚
guoze完成签到,获得积分10
刚刚
1秒前
PONY完成签到,获得积分10
1秒前
fairyinn完成签到,获得积分10
1秒前
读二白发布了新的文献求助10
1秒前
碎碎发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
我想静静发布了新的文献求助10
4秒前
5秒前
sunny33发布了新的文献求助10
5秒前
啦啦啦啦完成签到,获得积分10
5秒前
niufuking发布了新的文献求助10
5秒前
zz发布了新的文献求助10
7秒前
ydl0927完成签到 ,获得积分10
7秒前
7秒前
NexusExplorer应助满意语芙采纳,获得10
7秒前
llll完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
CipherSage应助zhengyalan采纳,获得10
9秒前
10秒前
深情安青应助加油呀采纳,获得30
10秒前
lonely发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
想逃离发布了新的文献求助10
13秒前
Sally完成签到,获得积分10
13秒前
烟花应助GGbond采纳,获得10
13秒前
无花果应助GGbond采纳,获得10
13秒前
万能图书馆应助GGbond采纳,获得10
13秒前
13秒前
丘比特应助GGbond采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901