亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
catherine完成签到,获得积分10
刚刚
大个应助Pursork采纳,获得10
27秒前
PeterDeng完成签到,获得积分10
46秒前
领导范儿应助fveie采纳,获得10
50秒前
浮游应助今年花生去年红采纳,获得10
53秒前
59秒前
Pursork发布了新的文献求助10
1分钟前
科目三应助小圭采纳,获得10
1分钟前
小蘑菇应助朴素难敌采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助转转王转转采纳,获得10
1分钟前
GRG完成签到 ,获得积分0
1分钟前
Wj发布了新的文献求助10
2分钟前
所所应助Wj采纳,获得10
3分钟前
3分钟前
朴素难敌发布了新的文献求助30
3分钟前
3分钟前
usora发布了新的文献求助10
3分钟前
usora完成签到,获得积分10
3分钟前
3分钟前
Auralis完成签到 ,获得积分10
3分钟前
朴素难敌完成签到,获得积分10
4分钟前
4分钟前
丸子完成签到 ,获得积分10
4分钟前
4分钟前
五五完成签到 ,获得积分10
4分钟前
小圭发布了新的文献求助10
4分钟前
默默善愁发布了新的文献求助10
4分钟前
4分钟前
慕青应助dlfg采纳,获得10
4分钟前
大模型应助MrRen采纳,获得30
4分钟前
Lucas应助调皮的曼安采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
sugar发布了新的文献求助10
5分钟前
小圭完成签到,获得积分10
5分钟前
调皮的曼安完成签到,获得积分10
5分钟前
君衡完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459158
求助须知:如何正确求助?哪些是违规求助? 4564898
关于积分的说明 14297299
捐赠科研通 4489983
什么是DOI,文献DOI怎么找? 2459484
邀请新用户注册赠送积分活动 1449127
关于科研通互助平台的介绍 1424596