Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜秀发布了新的文献求助10
刚刚
山大琦子发布了新的文献求助10
1秒前
Veronica Mew完成签到 ,获得积分10
2秒前
orixero应助Rjy采纳,获得10
2秒前
ZXY完成签到 ,获得积分10
2秒前
Criminology34应助KK采纳,获得10
2秒前
高高的笑旋完成签到,获得积分20
2秒前
2秒前
Oliver完成签到,获得积分10
3秒前
枯荣发布了新的文献求助20
3秒前
刻苦寒云发布了新的文献求助10
3秒前
田様应助李木辰采纳,获得10
3秒前
Joshua发布了新的文献求助20
3秒前
叽里咕卢完成签到,获得积分10
3秒前
龙华之士发布了新的文献求助10
3秒前
asd应助暗能量采纳,获得30
4秒前
风轻完成签到,获得积分10
4秒前
4秒前
zzr发布了新的文献求助10
5秒前
jason发布了新的文献求助10
5秒前
清秀的月亮完成签到,获得积分10
5秒前
6秒前
orixero应助合适清采纳,获得10
6秒前
6秒前
6秒前
7秒前
FashionBoy应助韩小小采纳,获得10
8秒前
Hello应助荀连虎采纳,获得10
8秒前
我是老大应助YE采纳,获得10
8秒前
听枫完成签到,获得积分10
8秒前
汉堡包应助lyrtim采纳,获得10
8秒前
风雅发布了新的文献求助10
9秒前
阳阳完成签到,获得积分10
9秒前
muguang67完成签到,获得积分10
9秒前
CipherSage应助呆萌的若云采纳,获得10
9秒前
清爽的采白完成签到 ,获得积分10
9秒前
科研通AI6应助无辜秀采纳,获得10
10秒前
dogzz完成签到,获得积分10
10秒前
10秒前
十七完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646864
求助须知:如何正确求助?哪些是违规求助? 4772505
关于积分的说明 15036761
捐赠科研通 4805617
什么是DOI,文献DOI怎么找? 2569802
邀请新用户注册赠送积分活动 1526736
关于科研通互助平台的介绍 1485906