亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep graph clustering with multi-level subspace fusion

子空间拓扑 聚类分析 人工智能 计算机科学 模式识别(心理学) 图形 融合 数学 理论计算机科学 语言学 哲学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109077-109077 被引量:3
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoey完成签到,获得积分10
3秒前
蓝天海完成签到,获得积分0
3秒前
zxx0126发布了新的文献求助10
5秒前
顾矜应助tracy采纳,获得10
18秒前
大个应助icedreamer111采纳,获得10
23秒前
33秒前
33秒前
SciGPT应助景胜杰采纳,获得30
34秒前
Mm发布了新的文献求助10
38秒前
38秒前
小龙女发布了新的文献求助10
43秒前
Ava应助zhang_23采纳,获得10
45秒前
李健应助tufei采纳,获得10
47秒前
Lorain完成签到,获得积分10
51秒前
希望天下0贩的0应助realzuli采纳,获得10
53秒前
烟花应助小龙女采纳,获得10
1分钟前
1分钟前
华仔应助hio采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
景胜杰发布了新的文献求助30
1分钟前
寻道图强应助科研通管家采纳,获得30
1分钟前
2分钟前
2分钟前
LiuXiaoJie发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
采薇发布了新的文献求助10
2分钟前
2分钟前
LiuXiaoJie完成签到,获得积分10
2分钟前
2分钟前
2分钟前
icedreamer111发布了新的文献求助10
2分钟前
善学以致用应助icedreamer111采纳,获得10
3分钟前
3分钟前
ZMM完成签到,获得积分10
3分钟前
踏实的静竹完成签到,获得积分10
3分钟前
3分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244671
求助须知:如何正确求助?哪些是违规求助? 2888383
关于积分的说明 8252725
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385369
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626247