亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An intelligent intrusion detection system for distributed denial of service attacks: A support vector machine with hybrid optimization algorithm based approach

计算机科学 服务拒绝攻击 支持向量机 云计算 算法 入侵检测系统 机器学习 粒子群优化 人工智能 数据挖掘 混淆矩阵 水准点(测量) 互联网 万维网 操作系统 大地测量学 地理
作者
S. Sumathi,R. Rajesh
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (27) 被引量:30
标识
DOI:10.1002/cpe.7334
摘要

Summary Cloud computing offers comfortable service to business sectors as they can concentrate on their products. Over the internet, cloud computing is liable to various security threats and attacks which is a primary obstacle to the growth of cloud computing services. Distributed denial of service (DDoS) is one such attack that exploits cloud computing services using compromised machines; hence, its detection is a significant field of research. Several DDoS detection schemes have been proposed in the past, but they fail to detect real‐time active DDoS attacks because of their growth in severity and volume. Machine learning (ML) techniques are efficient in making predictions; hence, in this study, a hybrid ML intrusion detection system (IDS) model is proposed. The performance of the proposed IDS model is improved by employing a 10‐fold cross‐validation technique to perform feature selection, reducing data dimensions on the publicly available benchmark NSL‐KDD dataset. Performance validation of the proposed hybrid IDS model is done using the confusion matrix. Support vector machine (SVM) parameters are fine‐tuned using hybrid Harris Hawks optimization (HHO) and particle swarm optimization (PSO) algorithms. The performance of these hybrid algorithms is compared with other classical algorithms such as C4.5, K‐nearest neighbor, and SVM using performance metrics such as precision, sensitivity, specificity, F1 score, and accuracy. From these comparisons, it can be inferred that the proposed SVM with hybrid optimization HHO‐PSO machine learning IDS model performs better DDoS detection with good performance metric values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
dawn发布了新的文献求助10
9秒前
善学以致用应助Fluoxtine采纳,获得10
23秒前
黑鲨完成签到 ,获得积分10
23秒前
Ava应助粗暴的坤采纳,获得10
26秒前
瘦瘦的迎南完成签到 ,获得积分10
28秒前
29秒前
谷雨秋发布了新的文献求助10
32秒前
42秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
J_Xu完成签到 ,获得积分10
1分钟前
所所应助凛玖niro采纳,获得10
1分钟前
1分钟前
凛玖niro发布了新的文献求助10
1分钟前
霖槿完成签到,获得积分10
1分钟前
1分钟前
十八完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
liuliu发布了新的文献求助30
3分钟前
3分钟前
烟花应助Li采纳,获得10
3分钟前
liuliu完成签到,获得积分20
3分钟前
3分钟前
4分钟前
ataybabdallah完成签到,获得积分10
4分钟前
4分钟前
4分钟前
开朗大雁完成签到 ,获得积分10
4分钟前
上官若男应助Marshall采纳,获得10
4分钟前
4分钟前
4分钟前
Marshall发布了新的文献求助10
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587