已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An intelligent intrusion detection system for distributed denial of service attacks: A support vector machine with hybrid optimization algorithm based approach

计算机科学 服务拒绝攻击 支持向量机 云计算 算法 入侵检测系统 机器学习 粒子群优化 人工智能 数据挖掘 混淆矩阵 水准点(测量) 互联网 万维网 操作系统 大地测量学 地理
作者
S. Sumathi,R. Rajesh
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (27) 被引量:30
标识
DOI:10.1002/cpe.7334
摘要

Summary Cloud computing offers comfortable service to business sectors as they can concentrate on their products. Over the internet, cloud computing is liable to various security threats and attacks which is a primary obstacle to the growth of cloud computing services. Distributed denial of service (DDoS) is one such attack that exploits cloud computing services using compromised machines; hence, its detection is a significant field of research. Several DDoS detection schemes have been proposed in the past, but they fail to detect real‐time active DDoS attacks because of their growth in severity and volume. Machine learning (ML) techniques are efficient in making predictions; hence, in this study, a hybrid ML intrusion detection system (IDS) model is proposed. The performance of the proposed IDS model is improved by employing a 10‐fold cross‐validation technique to perform feature selection, reducing data dimensions on the publicly available benchmark NSL‐KDD dataset. Performance validation of the proposed hybrid IDS model is done using the confusion matrix. Support vector machine (SVM) parameters are fine‐tuned using hybrid Harris Hawks optimization (HHO) and particle swarm optimization (PSO) algorithms. The performance of these hybrid algorithms is compared with other classical algorithms such as C4.5, K‐nearest neighbor, and SVM using performance metrics such as precision, sensitivity, specificity, F1 score, and accuracy. From these comparisons, it can be inferred that the proposed SVM with hybrid optimization HHO‐PSO machine learning IDS model performs better DDoS detection with good performance metric values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
心随以动完成签到 ,获得积分10
1秒前
搞怪的白云完成签到 ,获得积分10
4秒前
Arisujunai完成签到 ,获得积分10
4秒前
冷HorToo完成签到 ,获得积分10
5秒前
华仔应助jing采纳,获得10
6秒前
obsession完成签到 ,获得积分10
8秒前
10秒前
11秒前
12秒前
wanci应助pililili采纳,获得10
13秒前
Cosmosurfer完成签到,获得积分10
13秒前
化雪彼岸发布了新的文献求助10
15秒前
修辛完成签到 ,获得积分10
15秒前
热心易绿完成签到 ,获得积分10
16秒前
浮游应助hepotosis采纳,获得10
16秒前
冰雪痕发布了新的文献求助10
17秒前
到底发不发大概完成签到,获得积分10
17秒前
胡佳文完成签到,获得积分20
19秒前
万能图书馆应助panpan采纳,获得10
20秒前
mmmmm完成签到,获得积分10
23秒前
纯情的白开水完成签到 ,获得积分10
28秒前
yayoi发布了新的文献求助10
29秒前
31秒前
月见完成签到 ,获得积分10
35秒前
panpan发布了新的文献求助10
35秒前
taotao完成签到,获得积分10
37秒前
小小小白完成签到,获得积分10
37秒前
wanci应助现代尔芙采纳,获得10
39秒前
Wenqi完成签到 ,获得积分10
40秒前
Nomb1发布了新的文献求助10
41秒前
科研通AI2S应助liyanping采纳,获得10
42秒前
ZM完成签到 ,获得积分10
44秒前
姆姆没买完成签到 ,获得积分0
46秒前
星辰大海应助Nomb1采纳,获得10
47秒前
大模型应助孙j采纳,获得20
47秒前
51秒前
sakyadamo发布了新的文献求助10
56秒前
58秒前
kshuizhuyu完成签到,获得积分10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502531
求助须知:如何正确求助?哪些是违规求助? 4598345
关于积分的说明 14463856
捐赠科研通 4531936
什么是DOI,文献DOI怎么找? 2483722
邀请新用户注册赠送积分活动 1466943
关于科研通互助平台的介绍 1439576