An intelligent intrusion detection system for distributed denial of service attacks: A support vector machine with hybrid optimization algorithm based approach

计算机科学 服务拒绝攻击 支持向量机 云计算 算法 入侵检测系统 机器学习 粒子群优化 人工智能 数据挖掘 混淆矩阵 水准点(测量) 互联网 万维网 操作系统 大地测量学 地理
作者
S. Sumathi,R. Rajesh
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (27) 被引量:30
标识
DOI:10.1002/cpe.7334
摘要

Summary Cloud computing offers comfortable service to business sectors as they can concentrate on their products. Over the internet, cloud computing is liable to various security threats and attacks which is a primary obstacle to the growth of cloud computing services. Distributed denial of service (DDoS) is one such attack that exploits cloud computing services using compromised machines; hence, its detection is a significant field of research. Several DDoS detection schemes have been proposed in the past, but they fail to detect real‐time active DDoS attacks because of their growth in severity and volume. Machine learning (ML) techniques are efficient in making predictions; hence, in this study, a hybrid ML intrusion detection system (IDS) model is proposed. The performance of the proposed IDS model is improved by employing a 10‐fold cross‐validation technique to perform feature selection, reducing data dimensions on the publicly available benchmark NSL‐KDD dataset. Performance validation of the proposed hybrid IDS model is done using the confusion matrix. Support vector machine (SVM) parameters are fine‐tuned using hybrid Harris Hawks optimization (HHO) and particle swarm optimization (PSO) algorithms. The performance of these hybrid algorithms is compared with other classical algorithms such as C4.5, K‐nearest neighbor, and SVM using performance metrics such as precision, sensitivity, specificity, F1 score, and accuracy. From these comparisons, it can be inferred that the proposed SVM with hybrid optimization HHO‐PSO machine learning IDS model performs better DDoS detection with good performance metric values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助麦兜采纳,获得10
刚刚
清栀完成签到,获得积分10
刚刚
刚刚
1秒前
赘婿应助lkk采纳,获得10
1秒前
某不科学的萌萌完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
hf发布了新的文献求助10
4秒前
5秒前
昭明完成签到,获得积分10
5秒前
Yangjin完成签到,获得积分20
5秒前
5秒前
善学以致用应助lzj采纳,获得10
5秒前
6秒前
longuy完成签到,获得积分10
6秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Leif应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
科研小菜鸟完成签到,获得积分10
8秒前
852应助太清采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
Leif应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
学术哥布林关注了科研通微信公众号
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620548
求助须知:如何正确求助?哪些是违规求助? 4705184
关于积分的说明 14930630
捐赠科研通 4762246
什么是DOI,文献DOI怎么找? 2551059
邀请新用户注册赠送积分活动 1513711
关于科研通互助平台的介绍 1474633