已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An intelligent intrusion detection system for distributed denial of service attacks: A support vector machine with hybrid optimization algorithm based approach

计算机科学 服务拒绝攻击 支持向量机 云计算 算法 入侵检测系统 机器学习 粒子群优化 人工智能 数据挖掘 混淆矩阵 水准点(测量) 互联网 万维网 操作系统 大地测量学 地理
作者
S. Sumathi,R. Rajesh
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (27) 被引量:30
标识
DOI:10.1002/cpe.7334
摘要

Summary Cloud computing offers comfortable service to business sectors as they can concentrate on their products. Over the internet, cloud computing is liable to various security threats and attacks which is a primary obstacle to the growth of cloud computing services. Distributed denial of service (DDoS) is one such attack that exploits cloud computing services using compromised machines; hence, its detection is a significant field of research. Several DDoS detection schemes have been proposed in the past, but they fail to detect real‐time active DDoS attacks because of their growth in severity and volume. Machine learning (ML) techniques are efficient in making predictions; hence, in this study, a hybrid ML intrusion detection system (IDS) model is proposed. The performance of the proposed IDS model is improved by employing a 10‐fold cross‐validation technique to perform feature selection, reducing data dimensions on the publicly available benchmark NSL‐KDD dataset. Performance validation of the proposed hybrid IDS model is done using the confusion matrix. Support vector machine (SVM) parameters are fine‐tuned using hybrid Harris Hawks optimization (HHO) and particle swarm optimization (PSO) algorithms. The performance of these hybrid algorithms is compared with other classical algorithms such as C4.5, K‐nearest neighbor, and SVM using performance metrics such as precision, sensitivity, specificity, F1 score, and accuracy. From these comparisons, it can be inferred that the proposed SVM with hybrid optimization HHO‐PSO machine learning IDS model performs better DDoS detection with good performance metric values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pauline完成签到 ,获得积分10
刚刚
1秒前
69完成签到,获得积分10
1秒前
chenzheng完成签到 ,获得积分10
1秒前
1秒前
merry6669完成签到 ,获得积分10
2秒前
11112321321发布了新的文献求助10
3秒前
DChen完成签到 ,获得积分10
3秒前
Ru完成签到 ,获得积分10
4秒前
wisdom完成签到,获得积分10
5秒前
俏皮短靴发布了新的文献求助30
6秒前
阿玖应助一碗小米饭采纳,获得10
6秒前
xiaohan,JIA完成签到,获得积分10
6秒前
可爱安白完成签到,获得积分10
6秒前
彻底完成签到,获得积分10
7秒前
白壹一完成签到 ,获得积分10
7秒前
mbq完成签到,获得积分10
9秒前
加菲丰丰完成签到,获得积分0
10秒前
changping应助ltxinanjiao采纳,获得50
10秒前
zy完成签到,获得积分10
10秒前
11秒前
明天更好完成签到 ,获得积分10
11秒前
11秒前
认真的寒香完成签到,获得积分10
12秒前
XL神放完成签到 ,获得积分10
13秒前
SciGPT应助肥而不腻的羚羊采纳,获得10
14秒前
123完成签到 ,获得积分10
14秒前
琳雨完成签到,获得积分10
14秒前
14秒前
Haki完成签到,获得积分10
16秒前
16秒前
阿达发布了新的文献求助10
16秒前
娜子完成签到,获得积分10
16秒前
Cao完成签到 ,获得积分10
17秒前
17秒前
Heyley完成签到,获得积分10
18秒前
移动马桶完成签到 ,获得积分10
18秒前
19秒前
20秒前
qianqian发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301191
求助须知:如何正确求助?哪些是违规求助? 4448856
关于积分的说明 13847395
捐赠科研通 4334823
什么是DOI,文献DOI怎么找? 2379876
邀请新用户注册赠送积分活动 1374944
关于科研通互助平台的介绍 1340763