塔菲尔方程
磷化物
材料科学
催化作用
过电位
电化学
电解质
过渡金属
分解水
制氢
化学工程
氢
镍
纳米技术
物理化学
电极
化学
冶金
生物化学
有机化学
光催化
工程类
作者
Duong Nguyen Nguyen,Thi Kim Cuong Phu,Jaekyum Kim,Won Tae Hong,Jin‐Soo Kim,Seung Hun Roh,Ho Seok Park,Chan‐Hwa Chung,Woo‐Seok Choe,Hyeyoung Shin,Jeong Yong Lee,Jung Kyu Kim
出处
期刊:Small
[Wiley]
日期:2022-09-19
卷期号:18 (45)
被引量:18
标识
DOI:10.1002/smll.202204797
摘要
Abstract Interface modulation of nickel phosphide (Ni 2 P) to produce an optimal catalytic activation barrier has been considered a promising approach to enhance the hydrogen production activity via water splitting. Herein, heteronuclei‐mediated in situ growth of hollow Ni 2 P nanospheres on a surface defect‐engineered titanium carbide (Ti 3 C 2 T x ) MXene showing high electrochemical activity for the hydrogen evolution reaction (HER) is demonstrated. The heteronucleation drives intrinsic strain in hexagonal Ni 2 P with an observable distortion at the Ni 2 P@Ti 3 C 2 T x MXene heterointerface, which leads to charge redistribution and improved charge transfer at the interface between the two components. The strain at the Ni 2 P@Ti 3 C 2 T x MXene heterointerface significantly boosts the electrochemical catalytic activities and stability toward HER in an acidic medium via a combination between experimental results and theoretical calculations. In a 0.5 m H 2 SO 4 electrolyte, the Ni 2 P@Ti 3 C 2 T x MXene hybrid shows excellent HER catalytic performance, requiring an overpotential of 123.6 mV to achieve 10 mA cm −2 with a Tafel slope of 39 mV dec −1 and impressive durability over 24 h operation. This approach presents a significant potential to rationally design advanced catalysts coupled with 2D materials and transition metal‐based compounds for state‐of‐the‐art high efficiency energy conversions.
科研通智能强力驱动
Strongly Powered by AbleSci AI