催化作用
质子交换膜燃料电池
氧气
氧还原反应
氧还原
兴奋剂
燃料电池
质子
电催化剂
离子
膜
离子交换
无机化学
化学
氢
材料科学
化学工程
电极
电化学
有机化学
工程类
生物化学
物理化学
物理
光电子学
量子力学
作者
Panpan Sun,Kangwei Qiao,Danyang Li,Xuerui Liu,Huibing Liu,Yang Liu,Haoxiang Xu,Zhongbin Zhuang,Yushan Yan,Dapeng Cao
出处
期刊:Chem catalysis
[Elsevier]
日期:2022-10-01
卷期号:2 (10): 2750-2763
被引量:11
标识
DOI:10.1016/j.checat.2022.09.009
摘要
Tailoring the local environment and electronic structure of the active center of M-N-C catalysts is a promising route to improve the performance of catalysts. Herein, we design and controllably synthesize an O-doped O-FeN4C-O catalyst and identify its local structure, which contains two kinds of oxygen doping, i.e., axial-oxygen doping and second-coordination-shell oxygen doping of FeN4 species. Density functional theory calculations reveal that the synergy of the two kinds of oxygen doping optimizes electronic structure and therefore boosts oxygen reaction reduction (ORR) performance. Consequently, the O-FeN4C-O exhibits excellent ORR activities in both acidic and alkaline conditions. Importantly, the O-FeN4C-O-based proton- and anion-exchange membrane fuel cells deliver ultra-high peak power densities of 0.88 and 1.24 W cm−2, which ranked among the top performers of non-precious-metal ORR catalysts-based fuel cells. This work paves a new avenue for designing M-N4-X (X = P, S, etc.) catalysts with tunable electronic structures for different electrocatalysis, including carbon dioxide and nitrogen reduction and oxygen and hydrogen evolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI