已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Machine Learning Model To Predict CO2 Reduction Reactivity and Products Transferred from Metal-Zeolites

反应性(心理学) 电负性 催化作用 密度泛函理论 金属 甲醇 化学 过渡金属 氧化还原 计算化学 价(化学) 沸石 物理化学 无机化学 有机化学 病理 替代医学 医学
作者
Qin Zhu,Yuming Gu,Xinyi Liang,Xinzhu Wang,Jing Ma
出处
期刊:ACS Catalysis 卷期号:12 (19): 12336-12348 被引量:35
标识
DOI:10.1021/acscatal.2c03250
摘要

Various reactive intermediates and Cn products from carbon dioxide reduction reaction (CO2RR) play critical roles in the chemical and fuel industry. Developing easily accessible activity descriptors to predict possible intermediates and products of CO2RR is of great importance. The free energy changes (ΔG) for all possible reaction intermediate and product probability (P) of CO2 reduction to methanol, methane, and formaldehyde on 26 single-atom catalysts (SACs) in zeolites were predicted by density functional theory (DFT) calculations and machine learning (ML) models. The adsorption free energies of ΔG*OH and ΔG*O*CH2 were highly correlated with catalytic activity. Producing methanol was favorable for metal-zeolites with early transition metals and main group elements. Methane production was more feasible for some systems such as Co-zeolite, due to the low free energy and high selectivity against the hydrogen evolution reaction. Both XGBoost and ExtraTrees algorithms could give satisfactory predictions of ΔG and P in CO2RR using descriptors of reaction pathways, metal, charge transfer (CT) between the metal and reaction intermediate, hydrogen bond interaction between the intermediate and zeolite framework, and geometry. The global electronegativity difference (δχT) and average ionization energy difference (δIE) between the metal-zeolite and intermediate were introduced as features (along with the valence electron number of metals and the atomic number of reaction species) for prediction of CT values without the need of DFT calculations. The CT feature could be replaced by some additional descriptors such as the band gap (Eg) or coordination number of metals to intermediates in training ML models for free energy prediction. ML models on an external test such as MOFs, 2D materials, and molecular complex materials indicate that the proposed descriptors are general for the reaction free energy change and product prediction of SACs in CO2RR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuobei发布了新的文献求助10
1秒前
tengli完成签到,获得积分20
1秒前
Sainfoin发布了新的文献求助10
3秒前
悠木完成签到 ,获得积分10
5秒前
5秒前
8秒前
鸿儒发布了新的文献求助10
9秒前
小二郎应助tiantian采纳,获得10
10秒前
meizi发布了新的文献求助10
11秒前
12秒前
77完成签到 ,获得积分10
17秒前
18秒前
Mars夜愿发布了新的文献求助10
20秒前
发疯的游子完成签到 ,获得积分10
20秒前
21秒前
领导范儿应助tuobei采纳,获得10
21秒前
猪猪花完成签到,获得积分10
22秒前
24秒前
舒窈完成签到 ,获得积分10
24秒前
JoeyCory发布了新的文献求助10
25秒前
25秒前
沈凌凌完成签到,获得积分10
25秒前
包包酱完成签到,获得积分10
26秒前
camsLX发布了新的文献求助20
27秒前
28秒前
善学以致用应助WROBTY采纳,获得10
30秒前
30秒前
Akim应助DDD采纳,获得10
31秒前
李亨达发布了新的文献求助10
31秒前
tiantian发布了新的文献求助10
31秒前
三月聚粮应助Mars夜愿采纳,获得10
31秒前
32秒前
33秒前
stt发布了新的文献求助10
33秒前
35秒前
Dani发布了新的文献求助10
37秒前
zoey发布了新的文献求助10
37秒前
充电宝应助ganzhongxin采纳,获得30
38秒前
flowck发布了新的文献求助10
39秒前
nianxunxi完成签到,获得积分10
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314113
求助须知:如何正确求助?哪些是违规求助? 2946548
关于积分的说明 8530507
捐赠科研通 2622198
什么是DOI,文献DOI怎么找? 1434385
科研通“疑难数据库(出版商)”最低求助积分说明 665268
邀请新用户注册赠送积分活动 650832