桑格测序
先证者
小头畸形
错义突变
遗传学
外显子组测序
医学
生物信息学
眼科
生物
突变
基因
作者
Sarah Hull,Gavin Arno,Pia Østergaard,Nikolas Pontikos,Anthony G. Robson,Andrew R. Webster,Chris Hogg,Genevieve Wright,Robert Henderson,Carol-Anne Martin,Andrew P. Jackson,Sahar Mansour,Anthony T. Moore,Michel Michaelides
标识
DOI:10.1016/j.ajo.2019.05.001
摘要
•All patients had reduced vision and nystagmus and half were legally blind. •Retinal findings ranged from peripheral non-perfusion to total retinal detachment. •Systemic associations included low bone density and learning difficulties. •Variants in LRP5, KIF11, and TUBGCP6 were identified in 7 of 10 families. Purpose Familial exudative vitreoretinopathy (FEVR) is a rare finding in patients with genetic forms of microcephaly. This study documents the detailed phenotype and expands the range of genetic heterogeneity. Design Retrospective case series. Methods Twelve patients (10 families) with a diagnosis of FEVR and microcephaly were ascertained from pediatric genetic eye clinics and underwent full clinical assessment including retinal imaging. Molecular investigations included candidate gene Sanger sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS). Results All patients had reduced vision and nystagmus. Six were legally blind. Two probands carried bi-allelic LRP5 variants, both presenting with bilateral retinal folds. A novel homozygous splice variant, and 2 missense variants were identified. Subsequent bone density measurement identified osteoporosis in one proband. Four families had heterozygous KIF11 variants. Two probands had a retinal fold in one eye and chorioretinal atrophy in the other; the other 2 had bilateral retinal folds. Four heterozygous variants were found, including 2 large deletions not identified on Sanger sequencing or WES. Finally, a family of 2 children with learning difficulties, abnormal peripheral retinal vasculogenesis, and rod-cone dystrophy were investigated. They were found to have bi-allelic splicing variants in TUBGCP6. Three families remain unsolved following WES and WGS. Conclusions Molecular diagnosis has been achieved in 7 of 10 families investigated, including a previously unrecognized association with LRP5. WGS enabled molecular diagnosis in 3 families after prior negative Sanger sequencing of the causative gene. This has enabled patient-specific care with targeted investigations and accurate family counseling. Familial exudative vitreoretinopathy (FEVR) is a rare finding in patients with genetic forms of microcephaly. This study documents the detailed phenotype and expands the range of genetic heterogeneity. Retrospective case series. Twelve patients (10 families) with a diagnosis of FEVR and microcephaly were ascertained from pediatric genetic eye clinics and underwent full clinical assessment including retinal imaging. Molecular investigations included candidate gene Sanger sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS). All patients had reduced vision and nystagmus. Six were legally blind. Two probands carried bi-allelic LRP5 variants, both presenting with bilateral retinal folds. A novel homozygous splice variant, and 2 missense variants were identified. Subsequent bone density measurement identified osteoporosis in one proband. Four families had heterozygous KIF11 variants. Two probands had a retinal fold in one eye and chorioretinal atrophy in the other; the other 2 had bilateral retinal folds. Four heterozygous variants were found, including 2 large deletions not identified on Sanger sequencing or WES. Finally, a family of 2 children with learning difficulties, abnormal peripheral retinal vasculogenesis, and rod-cone dystrophy were investigated. They were found to have bi-allelic splicing variants in TUBGCP6. Three families remain unsolved following WES and WGS. Molecular diagnosis has been achieved in 7 of 10 families investigated, including a previously unrecognized association with LRP5. WGS enabled molecular diagnosis in 3 families after prior negative Sanger sequencing of the causative gene. This has enabled patient-specific care with targeted investigations and accurate family counseling.
科研通智能强力驱动
Strongly Powered by AbleSci AI