材料科学
塔菲尔方程
过电位
钝化
可逆氢电极
分解水
电催化剂
原子层沉积
电化学
交换电流密度
钴
纳米晶
光电阴极
光电化学电池
化学工程
光电流
无机化学
氢
制氢
电极
纳米技术
催化作用
图层(电子)
电解质
光催化
光电子学
物理化学
工作电极
化学
电子
工程类
有机化学
物理
冶金
量子力学
生物化学
作者
Hui Li,Peng Wen,Dominique S. Itanze,Michael W. Kim,Shiba P. Adhikari,Chang Lü,Lin Jiang,Yejun Qiu,Scott M. Geyer
标识
DOI:10.1002/adma.201900813
摘要
Abstract Developing earth‐abundant and efficient electrocatalysts for photoelectrochemical water splitting is critical to realizing a high‐performance solar‐to‐hydrogen energy conversion process. Herein, phosphorus‐rich colloidal cobalt diphosphide nanocrystals (CoP 2 NCs) are synthesized via hot injection. The CoP 2 NCs show a Pt‐like hydrogen evolution reaction (HER) electrocatalytic activity in acidic solution with a small overpotential of 39 mV to achieve −10 mA cm −2 and a very low Tafel slope of 32 mV dec −1 . Density functional theory (DFT) calculations reveal that the high P content both physically separates Co atoms to prevent H from over binding to multiple Co atoms, while simultaneously stabilizing H adsorbed to single Co atoms. The catalytic performance of the CoP 2 NCs is further demonstrated in a metal–insulator–semiconductor photoelectrochemical device consisting of bottom p‐Si light absorber, atomic layer deposition Al–ZnO passivation layers, and the CoP 2 cocatalyst. The p‐Si/AZO/TiO 2 /CoP 2 photocathode shows a photocurrent density of −16.7 mA cm −2 at 0 V versus reversible hydrogen electrode (RHE) and an output photovoltage of 0.54 V. The high performance and stability are attributed to the junction between p‐Si and AZO, the corrosion‐resistance of the pinhole‐free TiO 2 protective layer, and the fast HER kinetics of the CoP 2 NCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI