A novel methodology for optimal single mobile robot scheduling using whale optimization algorithm

计算机科学 作业车间调度 机器人 不确定性算法 模拟退火 粒子群优化 移动机器人 数学优化 算法 NP 调度(生产过程) 人工智能 数学 地铁列车时刻表 计算 操作系统 图灵机
作者
Milica Petrović,Zoran Miljković,Aleksandar Jokić
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:81: 105520-105520 被引量:70
标识
DOI:10.1016/j.asoc.2019.105520
摘要

One of the fundamental requirements for creating an intelligent manufacturing environment is to develop a reliable, efficient and optimally scheduled material transport system. Besides traditional material transport solutions based on conveyor belts, industrial trucks, or automated guided vehicles, nowadays intelligent mobile robots are becoming widely used to satisfy this requirement. In this paper, the authors analyze a single mobile robot scheduling problem in order to find an optimal way to transport raw materials, goods, and parts within an intelligent manufacturing system. The proposed methodology is based on biologically inspired Whale Optimization Algorithm (WOA) and is aimed to find the optimal solution of the nondeterministic polynomial-hard (NP-hard) scheduling problem. The authors propose a novel mathematical model for the problem and give a mathematical formulation for minimization of seven fitness functions (makespan, robot finishing time, transport time, balanced level of robot utilization, robot waiting time, job waiting time, as well as total robot and job waiting time). This newly developed methodology is extensively experimentally tested on 26 benchmark problems through three experimental studies and compared to five meta-heuristic algorithms including genetic algorithm (GA), simulated annealing (SA), generic and chaotic Particle Swarm Optimization algorithm (PSO and cPSO), and hybrid GA–SA algorithm. Furthermore, the data are analyzed by using the Friedman statistical test to prove that results are statistically significant. Finally, generated scheduling plans are tested by Khepera II mobile robot within a laboratory model of the manufacturing environment. The experimental results show that the proposed methodology provides very competitive results compared to the state-of-art optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
犹豫嚣完成签到,获得积分10
刚刚
刚刚
老胡给我鼠完成签到,获得积分10
1秒前
song发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
学术小子发布了新的文献求助10
5秒前
5秒前
5秒前
炙热的钧发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
9秒前
酸酸完成签到,获得积分10
9秒前
9秒前
赘婿应助科研通管家采纳,获得30
9秒前
SciGPT应助傻傻的听安采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
Captainhana完成签到,获得积分10
10秒前
溫蒂应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
11秒前
寒冷如曼发布了新的文献求助10
11秒前
科研通AI5应助碧蓝的安莲采纳,获得10
12秒前
吴映波完成签到,获得积分10
12秒前
YW完成签到,获得积分10
12秒前
moralz完成签到,获得积分10
12秒前
Self发布了新的文献求助10
12秒前
GuangliangGao发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755494
求助须知:如何正确求助?哪些是违规求助? 3298655
关于积分的说明 10106495
捐赠科研通 3013264
什么是DOI,文献DOI怎么找? 1655069
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286