NAD+激酶
福尔马赞
脱氢酶
乳酸脱氢酶
生物化学
化学
检出限
辅因子
酶
色谱法
氧化还原酶
分子生物学
生物
作者
Kamonwan Chamchoy,Danaya Pakotiprapha,Pornpan Pumirat,Ubolsree Leartsakulpanich,Usa Boonyuen
标识
DOI:10.1186/s12858-019-0108-1
摘要
The reduction of tetrazolium salts by NAD(P)H to formazan product has been widely used to determine the metabolic activity of cells, and as an indicator of cell viability. However, the application of a WST-8 based assay for the quantitative measurement of dehydrogenase enzyme activity has not been described before. In this study, we reported the application of an assay based on the tetrazolium salt WST-8 for the quantitative measurement of dehydrogenase activity. The assay is performed in a microplate format, where a single endpoint is measured at 450 nm. The optimized dehydrogenase-WST-8 assay conditions, the limit of detection (LOD), accuracy, and precision for measuring NAD(P)H, were demonstrated. The sensitivity of the WST-8 assay for detecting NAD(P)H was 5-fold greater than the spectrophotometric measurement of NAD(P)H absorption at 340 nm (LOD of 0.3 nmole vs 1.7 nmole, respectively). In the dehydrogenase assay, the colorimetric WST-8 method exhibits excellent assay reproducibility with a Z’ factor of 0.9. The WST-8 assay was also used to determine dehydrogenase activity in biological samples, and for screening the substrate of uncharacterized short-chain dehydrogenase/oxidoreductase from Burkholderia pseudomallei. The results suggest that the WST-8 assay is a sensitive and rapid method for determining NAD(P)H concentration and dehydrogenase enzyme activity, which can be further applied for the high-throughput screening of dehydrogenases.
科研通智能强力驱动
Strongly Powered by AbleSci AI