A comparative analysis of black spot identification methods and road accident segmentation methods

分割 黑点 计算机科学 一致性(知识库) 聚类分析 鉴定(生物学) 人工智能 数据挖掘 模式识别(心理学) 植物 园艺 生物
作者
Maen Ghadi,Árpád Török
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:128: 1-7 被引量:72
标识
DOI:10.1016/j.aap.2019.03.002
摘要

Indicating road safety-related aspects in the phase of planning and operating is always a challenging task for experts. The success of any method applied in identifying a high-risk location or black spot (BS) on the road should depend fundamentally on how data is organized into specific homogeneous segments. The appropriate combination of black spot identification (BSID) method and segmentation method contributes significantly to the reduction in false positive (a site involved in safety investigation while it is not needed) and false negative (not involving a site in safety investigation while it is needed) cases in identifying BS segments. The purpose of this research is to study and compare the effect of methodological diversity of road network segmentation on the performance of different BSID methods. To do this, four commonly applied BS methods (empirical Bayesian (EB), excess EB, accident frequency, and accident ratio) have been evaluated against four different segmentation methods (spatial clustering, constant length, constant traffic volume, and the standard Highway Safety Manual segmentation method). Two evaluations have been used to compare the performance of the methods. The approach first evaluates the segmentation methods based on the accuracy of the developed safety performance function (SPF). The second evaluation applies consistency tests to compare the joint performances of the BS methods and segmentation methods. In conclusion, BSID methods showed a significant change in their performance depending on the different segmentation method applied. In general, the EB method has surpassed the other BSID methods in case of all segmentation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助mochi采纳,获得10
1秒前
科研通AI6应助李木子采纳,获得10
1秒前
希望天下0贩的0应助朱朱采纳,获得10
1秒前
yi111发布了新的文献求助10
2秒前
祝我每日愉快完成签到 ,获得积分10
2秒前
爆米花应助12采纳,获得10
3秒前
斯文败类应助秣旎采纳,获得10
3秒前
眯眯眼的裙子完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
美好易烟发布了新的文献求助10
4秒前
mdJdm完成签到 ,获得积分10
4秒前
852应助小周采纳,获得10
4秒前
4秒前
5秒前
彭于晏应助笑点低的碧琴采纳,获得10
5秒前
周杰伦关注了科研通微信公众号
5秒前
诗琪发布了新的文献求助10
5秒前
念初完成签到 ,获得积分10
5秒前
一一二二三三肆完成签到 ,获得积分20
5秒前
可爱的函函应助陈敏采纳,获得20
6秒前
6秒前
7秒前
8秒前
8秒前
Akim应助杨梦茹采纳,获得10
8秒前
OVERLXRD完成签到,获得积分10
9秒前
1234567890完成签到,获得积分10
9秒前
10秒前
流浪小诗人完成签到,获得积分10
10秒前
xzy998发布了新的文献求助30
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
科研通AI5应助kingyo采纳,获得10
11秒前
科研通AI6应助WNL采纳,获得10
11秒前
烟花应助陈灿灿采纳,获得10
12秒前
花开hhhhhhh发布了新的文献求助10
12秒前
李健应助秀儿采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835