A comparative analysis of black spot identification methods and road accident segmentation methods

分割 黑点 计算机科学 一致性(知识库) 聚类分析 鉴定(生物学) 人工智能 数据挖掘 模式识别(心理学) 植物 园艺 生物
作者
Maen Ghadi,Árpád Török
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:128: 1-7 被引量:72
标识
DOI:10.1016/j.aap.2019.03.002
摘要

Indicating road safety-related aspects in the phase of planning and operating is always a challenging task for experts. The success of any method applied in identifying a high-risk location or black spot (BS) on the road should depend fundamentally on how data is organized into specific homogeneous segments. The appropriate combination of black spot identification (BSID) method and segmentation method contributes significantly to the reduction in false positive (a site involved in safety investigation while it is not needed) and false negative (not involving a site in safety investigation while it is needed) cases in identifying BS segments. The purpose of this research is to study and compare the effect of methodological diversity of road network segmentation on the performance of different BSID methods. To do this, four commonly applied BS methods (empirical Bayesian (EB), excess EB, accident frequency, and accident ratio) have been evaluated against four different segmentation methods (spatial clustering, constant length, constant traffic volume, and the standard Highway Safety Manual segmentation method). Two evaluations have been used to compare the performance of the methods. The approach first evaluates the segmentation methods based on the accuracy of the developed safety performance function (SPF). The second evaluation applies consistency tests to compare the joint performances of the BS methods and segmentation methods. In conclusion, BSID methods showed a significant change in their performance depending on the different segmentation method applied. In general, the EB method has surpassed the other BSID methods in case of all segmentation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴迪迪完成签到,获得积分20
刚刚
友好德天完成签到 ,获得积分10
1秒前
1秒前
刘一一完成签到 ,获得积分10
1秒前
慎独完成签到,获得积分10
3秒前
3秒前
冷褲小子发布了新的文献求助10
4秒前
4秒前
6秒前
ding应助老水采纳,获得10
6秒前
6秒前
科目三应助鬼王神采纳,获得10
6秒前
123lx完成签到,获得积分10
6秒前
成就映秋完成签到,获得积分10
7秒前
无极微光应助Du采纳,获得20
8秒前
Johnson完成签到,获得积分10
8秒前
Jaime发布了新的文献求助10
8秒前
貔貅完成签到,获得积分10
9秒前
嘿嘿发布了新的文献求助10
9秒前
在水一方应助waayu采纳,获得10
9秒前
痘痘不见了331完成签到,获得积分10
9秒前
一条蛆完成签到 ,获得积分10
10秒前
科研通AI5应助灵波采纳,获得10
11秒前
wu发布了新的文献求助10
11秒前
希望天下0贩的0应助Tamarin采纳,获得10
13秒前
13秒前
珍惜眼前人完成签到,获得积分10
13秒前
18秒前
18秒前
HUA完成签到,获得积分10
18秒前
鬼背小何发布了新的文献求助10
19秒前
whr完成签到,获得积分10
20秒前
兴奋冷松完成签到,获得积分10
21秒前
长安完成签到,获得积分10
21秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
科研通AI6应助刘刘佳采纳,获得30
24秒前
小蘑菇应助dong采纳,获得10
24秒前
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142593
求助须知:如何正确求助?哪些是违规求助? 4340821
关于积分的说明 13518386
捐赠科研通 4180828
什么是DOI,文献DOI怎么找? 2292600
邀请新用户注册赠送积分活动 1293261
关于科研通互助平台的介绍 1235765