A comparative analysis of black spot identification methods and road accident segmentation methods

分割 黑点 计算机科学 一致性(知识库) 聚类分析 鉴定(生物学) 人工智能 数据挖掘 模式识别(心理学) 植物 生物 园艺
作者
Maen Ghadi,Árpád Török
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:128: 1-7 被引量:72
标识
DOI:10.1016/j.aap.2019.03.002
摘要

Indicating road safety-related aspects in the phase of planning and operating is always a challenging task for experts. The success of any method applied in identifying a high-risk location or black spot (BS) on the road should depend fundamentally on how data is organized into specific homogeneous segments. The appropriate combination of black spot identification (BSID) method and segmentation method contributes significantly to the reduction in false positive (a site involved in safety investigation while it is not needed) and false negative (not involving a site in safety investigation while it is needed) cases in identifying BS segments. The purpose of this research is to study and compare the effect of methodological diversity of road network segmentation on the performance of different BSID methods. To do this, four commonly applied BS methods (empirical Bayesian (EB), excess EB, accident frequency, and accident ratio) have been evaluated against four different segmentation methods (spatial clustering, constant length, constant traffic volume, and the standard Highway Safety Manual segmentation method). Two evaluations have been used to compare the performance of the methods. The approach first evaluates the segmentation methods based on the accuracy of the developed safety performance function (SPF). The second evaluation applies consistency tests to compare the joint performances of the BS methods and segmentation methods. In conclusion, BSID methods showed a significant change in their performance depending on the different segmentation method applied. In general, the EB method has surpassed the other BSID methods in case of all segmentation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aa1212121发布了新的文献求助10
刚刚
Crystal完成签到,获得积分10
2秒前
hzxy_lyt应助伶俐的茹嫣采纳,获得10
2秒前
2秒前
riccixuu完成签到 ,获得积分10
4秒前
小二郎应助ryan采纳,获得10
4秒前
shinysparrow应助菠菜采纳,获得200
5秒前
7秒前
fun发布了新的文献求助10
7秒前
8秒前
酷波er应助诗酒采纳,获得10
8秒前
8秒前
YYY应助舒心靖琪采纳,获得10
9秒前
wlz完成签到,获得积分10
10秒前
11秒前
11秒前
shi完成签到,获得积分10
15秒前
15秒前
15秒前
科研通AI5应助粉色小妖精采纳,获得10
16秒前
16秒前
17秒前
MAKEYF完成签到 ,获得积分10
17秒前
lll完成签到,获得积分10
19秒前
诗酒发布了新的文献求助10
20秒前
田様应助passerby采纳,获得10
21秒前
21秒前
hxb发布了新的文献求助10
21秒前
谷雨完成签到,获得积分10
21秒前
ryan发布了新的文献求助10
22秒前
科研通AI5应助咕咕采纳,获得20
24秒前
正直翎完成签到 ,获得积分10
24秒前
25秒前
酷波er应助坦率书白采纳,获得10
26秒前
ding应助113采纳,获得10
28秒前
FashionBoy应助hu采纳,获得10
28秒前
光亮猫咪发布了新的文献求助10
28秒前
30秒前
30秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479890
求助须知:如何正确求助?哪些是违规求助? 3070410
关于积分的说明 9117595
捐赠科研通 2762139
什么是DOI,文献DOI怎么找? 1515665
邀请新用户注册赠送积分活动 701116
科研通“疑难数据库(出版商)”最低求助积分说明 700048