A comparative analysis of black spot identification methods and road accident segmentation methods

分割 黑点 计算机科学 一致性(知识库) 聚类分析 鉴定(生物学) 人工智能 数据挖掘 模式识别(心理学) 植物 园艺 生物
作者
Maen Ghadi,Árpád Török
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:128: 1-7 被引量:72
标识
DOI:10.1016/j.aap.2019.03.002
摘要

Indicating road safety-related aspects in the phase of planning and operating is always a challenging task for experts. The success of any method applied in identifying a high-risk location or black spot (BS) on the road should depend fundamentally on how data is organized into specific homogeneous segments. The appropriate combination of black spot identification (BSID) method and segmentation method contributes significantly to the reduction in false positive (a site involved in safety investigation while it is not needed) and false negative (not involving a site in safety investigation while it is needed) cases in identifying BS segments. The purpose of this research is to study and compare the effect of methodological diversity of road network segmentation on the performance of different BSID methods. To do this, four commonly applied BS methods (empirical Bayesian (EB), excess EB, accident frequency, and accident ratio) have been evaluated against four different segmentation methods (spatial clustering, constant length, constant traffic volume, and the standard Highway Safety Manual segmentation method). Two evaluations have been used to compare the performance of the methods. The approach first evaluates the segmentation methods based on the accuracy of the developed safety performance function (SPF). The second evaluation applies consistency tests to compare the joint performances of the BS methods and segmentation methods. In conclusion, BSID methods showed a significant change in their performance depending on the different segmentation method applied. In general, the EB method has surpassed the other BSID methods in case of all segmentation approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
尼可深蓝完成签到 ,获得积分10
刚刚
飞快的孱完成签到,获得积分10
2秒前
ssy完成签到,获得积分10
4秒前
风格完成签到,获得积分10
7秒前
bi完成签到 ,获得积分10
8秒前
任夏完成签到,获得积分10
12秒前
20秒前
27秒前
Brian完成签到,获得积分10
27秒前
27秒前
一二完成签到,获得积分10
28秒前
正己化人应助科研通管家采纳,获得10
32秒前
Hanoi347应助科研通管家采纳,获得10
32秒前
星辰大海应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
Dharma_Bums发布了新的文献求助10
32秒前
南宫应助科研通管家采纳,获得10
32秒前
momo应助科研通管家采纳,获得10
32秒前
momo应助科研通管家采纳,获得10
32秒前
正己化人应助科研通管家采纳,获得10
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
1111111111应助科研通管家采纳,获得10
32秒前
嘿嘿完成签到,获得积分0
32秒前
蒋杰应助科研通管家采纳,获得10
33秒前
fufu完成签到 ,获得积分10
34秒前
不做Aspirin完成签到 ,获得积分10
36秒前
38秒前
kk完成签到,获得积分10
38秒前
ambrose37完成签到 ,获得积分10
39秒前
奋斗的凡完成签到 ,获得积分10
39秒前
王科婷完成签到 ,获得积分10
40秒前
mayamaya完成签到,获得积分10
41秒前
忧虑的墨镜完成签到 ,获得积分10
41秒前
xgx984发布了新的文献求助10
45秒前
46秒前
fei应助kk采纳,获得10
47秒前
小二郎应助言一采纳,获得10
48秒前
柒柒发布了新的文献求助10
50秒前
51秒前
you完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498664
求助须知:如何正确求助?哪些是违规求助? 4595831
关于积分的说明 14449958
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438563