Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 样品(材料) 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 物理 哲学 认识论 古生物学 气候学 生物 热力学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Ming C. Lin,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:347: 735-753 被引量:221
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
韶芸遥发布了新的文献求助20
1秒前
tumankol完成签到 ,获得积分10
1秒前
下一周完成签到,获得积分10
2秒前
2秒前
马户的崛起完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
Glitter完成签到 ,获得积分10
4秒前
感性的夜玉完成签到,获得积分10
4秒前
JamesPei应助111采纳,获得10
4秒前
淀粉肠发布了新的文献求助10
5秒前
赘婿应助欧贤书采纳,获得10
5秒前
伶俐皮卡丘完成签到,获得积分10
5秒前
lzh发布了新的文献求助10
5秒前
Huang完成签到 ,获得积分10
5秒前
赵西里完成签到,获得积分10
5秒前
现代秋白发布了新的文献求助30
5秒前
诸葛凤雏完成签到,获得积分10
6秒前
SARON完成签到 ,获得积分10
6秒前
邹雄辉完成签到,获得积分20
6秒前
6秒前
7秒前
找找找文献完成签到,获得积分10
7秒前
予初完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
lll发布了新的文献求助10
8秒前
leezz发布了新的文献求助30
8秒前
完美世界应助橙海晚风采纳,获得10
8秒前
9秒前
9秒前
雷红发布了新的文献求助10
9秒前
善学以致用应助张宇采纳,获得10
9秒前
无花果应助小菜采纳,获得10
10秒前
10秒前
JLUO完成签到,获得积分10
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The New Psychology of Health 500
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5201977
求助须知:如何正确求助?哪些是违规求助? 4381677
关于积分的说明 13643145
捐赠科研通 4238843
什么是DOI,文献DOI怎么找? 2325665
邀请新用户注册赠送积分活动 1323401
关于科研通互助平台的介绍 1275443