Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 样品(材料) 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 物理 哲学 认识论 古生物学 热力学 生物 气候学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Ming C. Lin,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:347: 735-753 被引量:221
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助zhongjr_hz采纳,获得10
1秒前
浮光完成签到,获得积分10
1秒前
Titi完成签到 ,获得积分10
2秒前
caop完成签到,获得积分10
3秒前
3秒前
Lvy完成签到,获得积分10
3秒前
xliiii完成签到,获得积分10
3秒前
英仙座发布了新的文献求助20
4秒前
机智的孤兰完成签到 ,获得积分10
4秒前
4秒前
LLLLL完成签到,获得积分10
4秒前
hobowei完成签到 ,获得积分10
4秒前
mdbbs2021完成签到,获得积分10
6秒前
WTTTTTFFFFFF发布了新的文献求助10
6秒前
唔呜無完成签到 ,获得积分10
6秒前
jiajia发布了新的文献求助10
7秒前
易燃物品完成签到,获得积分10
7秒前
Hina完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
li完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
贱小贱完成签到,获得积分10
8秒前
鱼儿完成签到,获得积分10
9秒前
asdfqwer应助luwenxuan采纳,获得10
10秒前
ttc完成签到,获得积分10
11秒前
英仙座完成签到,获得积分10
12秒前
鹿叽叽完成签到,获得积分10
12秒前
humaning完成签到,获得积分10
12秒前
agnway发布了新的文献求助10
12秒前
12秒前
WTTTTTFFFFFF完成签到,获得积分10
12秒前
请叫我风吹麦浪应助刘兴采纳,获得10
12秒前
HongJiang完成签到,获得积分10
12秒前
傻芙芙的完成签到,获得积分10
12秒前
余三浪完成签到,获得积分10
13秒前
ustina完成签到,获得积分10
13秒前
zhang完成签到,获得积分10
14秒前
努力向上的小刘完成签到,获得积分10
14秒前
阿艺完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027