Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 样品(材料) 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 物理 哲学 认识论 古生物学 气候学 生物 热力学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Ming C. Lin,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:347: 735-753 被引量:221
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
爆米花应助飘雪采纳,获得10
2秒前
2秒前
3秒前
3秒前
lzh完成签到,获得积分10
4秒前
4秒前
08龙完成签到,获得积分10
4秒前
科研通AI6应助ooooozhubi采纳,获得10
5秒前
善良安荷发布了新的文献求助10
5秒前
yema完成签到,获得积分10
5秒前
小二郎应助电磁炮采纳,获得10
5秒前
5秒前
杜志洪发布了新的文献求助10
5秒前
希望天下0贩的0应助可靠F采纳,获得10
6秒前
chen发布了新的文献求助10
6秒前
Laniakea发布了新的文献求助10
6秒前
6秒前
7秒前
Creep发布了新的文献求助10
7秒前
8秒前
呆萌芙蓉发布了新的文献求助10
8秒前
9秒前
酷波er应助glq采纳,获得10
9秒前
10秒前
10秒前
务实凡灵发布了新的文献求助10
10秒前
汉堡包应助Alice采纳,获得10
11秒前
11秒前
隐形元绿完成签到,获得积分10
12秒前
SciGPT应助善良安荷采纳,获得10
12秒前
Lexcellent发布了新的文献求助10
12秒前
13秒前
善学以致用应助LOVAE采纳,获得10
13秒前
13秒前
CH11完成签到,获得积分10
14秒前
锅锅发布了新的文献求助10
14秒前
边边玥铭发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352815
求助须知:如何正确求助?哪些是违规求助? 4485572
关于积分的说明 13963607
捐赠科研通 4385646
什么是DOI,文献DOI怎么找? 2409546
邀请新用户注册赠送积分活动 1401867
关于科研通互助平台的介绍 1375547