Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 样品(材料) 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 物理 哲学 认识论 古生物学 气候学 生物 热力学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Ming C. Lin,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:347: 735-753 被引量:221
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deway发布了新的文献求助10
刚刚
Zhjie126发布了新的文献求助10
1秒前
1秒前
1秒前
陆丰完成签到 ,获得积分10
2秒前
CipherSage应助福1采纳,获得10
2秒前
怕黑思山完成签到,获得积分10
2秒前
renpp822发布了新的文献求助30
2秒前
传奇3应助烟岚采纳,获得10
3秒前
石会发发布了新的文献求助10
5秒前
飞快的从丹完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
hahahaha发布了新的文献求助10
12秒前
ak24765发布了新的文献求助10
13秒前
15秒前
的荟完成签到,获得积分10
16秒前
大模型应助无钱采纳,获得10
16秒前
16秒前
17秒前
gky完成签到,获得积分10
17秒前
18秒前
丽娜发布了新的文献求助10
19秒前
19秒前
lyw完成签到 ,获得积分10
20秒前
20秒前
20秒前
思源应助Shi采纳,获得10
20秒前
的荟发布了新的文献求助10
21秒前
Plucky完成签到,获得积分10
21秒前
滚滚完成签到,获得积分10
21秒前
大模型应助淡淡的南风采纳,获得10
22秒前
22秒前
星辰大海应助书晨采纳,获得10
22秒前
Yao发布了新的文献求助30
23秒前
二十七完成签到 ,获得积分10
23秒前
GAOBIN000发布了新的文献求助10
24秒前
腼腆的恶天完成签到,获得积分10
25秒前
科研通AI5应助qq采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256