已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 样品(材料) 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 物理 哲学 认识论 古生物学 气候学 生物 热力学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Ming C. Lin,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:347: 735-753 被引量:221
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
5秒前
xr完成签到 ,获得积分10
6秒前
huang完成签到,获得积分10
8秒前
9秒前
monair完成签到 ,获得积分10
11秒前
哈哈完成签到 ,获得积分10
12秒前
14秒前
不安青牛应助鼠牛虎兔采纳,获得10
17秒前
馒头完成签到,获得积分10
17秒前
ll发布了新的文献求助10
25秒前
是三石啊完成签到 ,获得积分10
25秒前
充电宝应助SuyingGuo采纳,获得30
27秒前
28秒前
29秒前
yznfly应助6666采纳,获得200
31秒前
34秒前
34秒前
35秒前
aaaaaYue发布了新的文献求助10
39秒前
善学以致用应助ll采纳,获得10
39秒前
朝槿完成签到 ,获得积分10
42秒前
Ahui完成签到 ,获得积分10
46秒前
小二郎应助语嘘嘘采纳,获得10
46秒前
诸青梦完成签到 ,获得积分10
46秒前
李白完成签到 ,获得积分10
49秒前
silence完成签到 ,获得积分10
50秒前
yiyeshanren完成签到,获得积分10
52秒前
简单寻冬完成签到 ,获得积分10
54秒前
HeidiW完成签到 ,获得积分10
57秒前
Jasper应助SuyingGuo采纳,获得10
57秒前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
pual应助科研通管家采纳,获得10
1分钟前
pual应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
pual应助科研通管家采纳,获得10
1分钟前
孙泽一发布了新的文献求助10
1分钟前
科研通AI6应助一口蛋黄酥采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498050
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449067
捐赠科研通 4528164
什么是DOI,文献DOI怎么找? 2481373
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283