已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 样品(材料) 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 物理 哲学 认识论 古生物学 气候学 生物 热力学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Ming C. Lin,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:347: 735-753 被引量:221
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的姿发布了新的文献求助10
1秒前
1秒前
1秒前
Nancy发布了新的文献求助10
2秒前
zzz完成签到 ,获得积分10
3秒前
thebin发布了新的文献求助10
5秒前
5秒前
6秒前
叮叮完成签到 ,获得积分10
6秒前
7秒前
7秒前
清风细雨完成签到 ,获得积分10
7秒前
Lucas应助舒服的水壶采纳,获得10
7秒前
bing完成签到 ,获得积分10
8秒前
大胆的皮卡丘完成签到,获得积分10
8秒前
8秒前
CipherSage应助thebin采纳,获得10
10秒前
欢呼飞风发布了新的文献求助10
10秒前
wh完成签到,获得积分10
10秒前
zyw完成签到,获得积分10
11秒前
11秒前
又困了大王完成签到,获得积分20
11秒前
ndndd发布了新的文献求助10
12秒前
12秒前
12秒前
科研通AI6应助Yuki采纳,获得10
13秒前
13秒前
14秒前
素简发布了新的文献求助10
14秒前
珍珠火龙果完成签到 ,获得积分10
15秒前
15秒前
宇森完成签到,获得积分10
16秒前
温柔的姿完成签到,获得积分10
16秒前
笨笨如之完成签到 ,获得积分10
17秒前
Joy发布了新的文献求助30
17秒前
万能图书馆应助素简采纳,获得10
18秒前
18秒前
安详的夜春完成签到 ,获得积分10
18秒前
霁星河完成签到,获得积分10
19秒前
盛yyyy完成签到 ,获得积分10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443519
求助须知:如何正确求助?哪些是违规求助? 4553411
关于积分的说明 14241882
捐赠科研通 4475084
什么是DOI,文献DOI怎么找? 2452256
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794