Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 哲学 认识论 古生物学 生物 气候学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Chenfeng Li,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:347: 735-753 被引量:168
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称发布了新的文献求助10
刚刚
含糊发布了新的文献求助10
刚刚
搜集达人应助8564523采纳,获得10
刚刚
无限的隶发布了新的文献求助10
刚刚
不安豁发布了新的文献求助10
刚刚
www发布了新的文献求助10
1秒前
1秒前
Crystal完成签到,获得积分10
2秒前
Laus发布了新的文献求助10
2秒前
orixero应助碱性沉默采纳,获得10
2秒前
今后应助仙子狗尾巴花采纳,获得10
2秒前
tylerconan完成签到 ,获得积分10
3秒前
3秒前
英俊的铭应助隐形的易巧采纳,获得10
4秒前
独特微笑发布了新的文献求助10
4秒前
学海无涯完成签到,获得积分10
4秒前
科研小民工应助机智苗采纳,获得30
4秒前
楼梯口无头女孩完成签到,获得积分10
7秒前
7秒前
Grayball应助gg采纳,获得10
7秒前
7秒前
456发布了新的文献求助10
7秒前
8秒前
凤凰山发布了新的文献求助10
8秒前
独特的绿蝶完成签到,获得积分10
8秒前
8秒前
清歌扶酒发布了新的文献求助10
8秒前
东风完成签到,获得积分10
9秒前
10秒前
呆萌幼晴完成签到,获得积分10
10秒前
qinqiny完成签到 ,获得积分10
11秒前
11秒前
周小慧完成签到,获得积分20
11秒前
轻松的人龙完成签到,获得积分20
11秒前
小蘑菇应助yxf采纳,获得10
11秒前
1199关注了科研通微信公众号
11秒前
星辰大海应助小赞芽采纳,获得10
11秒前
郑开司09发布了新的文献求助10
12秒前
溪与芮行完成签到 ,获得积分10
12秒前
QS完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762