已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 样品(材料) 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 物理 哲学 认识论 古生物学 气候学 生物 热力学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Ming C. Lin,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:347: 735-753 被引量:221
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Cindy采纳,获得10
2秒前
kali完成签到 ,获得积分10
4秒前
Pan发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
CipherSage应助Jnscal采纳,获得10
8秒前
我是老大应助苻谷丝采纳,获得10
8秒前
9秒前
11秒前
隐形曼青应助工诩采纳,获得10
11秒前
xuexin完成签到,获得积分20
11秒前
美满的中蓝完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助Fishchips采纳,获得10
13秒前
Pengh完成签到,获得积分10
13秒前
苯二氮卓发布了新的文献求助10
14秒前
栗惠发布了新的文献求助10
16秒前
xuexin发布了新的文献求助10
17秒前
华仔应助王王采纳,获得10
18秒前
Miriammmmm发布了新的文献求助30
19秒前
20秒前
21秒前
22秒前
Hoolyshit发布了新的文献求助10
22秒前
英姑应助Arilus采纳,获得10
22秒前
25秒前
儒雅香彤完成签到 ,获得积分10
25秒前
无花果应助ddddd11采纳,获得10
25秒前
121发布了新的文献求助10
26秒前
微熏的羊发布了新的文献求助10
26秒前
华仔应助三口神奇采纳,获得10
26秒前
behre关注了科研通微信公众号
27秒前
jingjing发布了新的文献求助10
28秒前
29秒前
30秒前
张爽发布了新的文献求助10
30秒前
30秒前
瑰慈发布了新的文献求助20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407380
求助须知:如何正确求助?哪些是违规求助? 4524989
关于积分的说明 14100518
捐赠科研通 4438717
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428447
关于科研通互助平台的介绍 1406479