亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 哲学 认识论 古生物学 气候学 生物
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Chenfeng Li,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:347: 735-753 被引量:168
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助TJY采纳,获得10
4秒前
SciGPT应助火焰向上采纳,获得10
5秒前
5秒前
Jy完成签到 ,获得积分10
8秒前
9秒前
善良安南完成签到,获得积分10
10秒前
12秒前
随性随缘随命完成签到 ,获得积分10
13秒前
17秒前
叶楠完成签到,获得积分10
22秒前
24秒前
Magali发布了新的文献求助10
25秒前
TJY发布了新的文献求助10
30秒前
可爱的函函应助善良安南采纳,获得10
31秒前
赘婿应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
misha991应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
35秒前
39秒前
TJY完成签到,获得积分10
39秒前
43秒前
ai zs发布了新的文献求助10
44秒前
饭饭发布了新的文献求助10
46秒前
学术霸王完成签到,获得积分10
48秒前
51秒前
52秒前
绥生完成签到 ,获得积分10
57秒前
哈哈哈完成签到,获得积分10
58秒前
59秒前
肖圣凯发布了新的文献求助10
1分钟前
1分钟前
1分钟前
不羡江中仙完成签到 ,获得积分10
1分钟前
肖圣凯发布了新的文献求助10
1分钟前
大火烧了毛毛虫完成签到,获得积分10
1分钟前
娜娜完成签到 ,获得积分10
1分钟前
自然的南琴完成签到,获得积分10
1分钟前
义气白开水完成签到,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171436
求助须知:如何正确求助?哪些是违规求助? 2822378
关于积分的说明 7938966
捐赠科研通 2482862
什么是DOI,文献DOI怎么找? 1322830
科研通“疑难数据库(出版商)”最低求助积分说明 633748
版权声明 602627